亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Integrated MPCAM: Multi-PSF learning for large depth-of-field computational imaging

计算机科学 人工智能 深度学习 计算机视觉 景深 图像融合 计算摄影 领域(数学) 光学(聚焦) 图像(数学) 图像处理 光学 数学 物理 纯数学
作者
Tingdong Kou,Qican Zhang,Chongyang Zhang,Tianyue He,Junfei Shen
出处
期刊:Information Fusion [Elsevier]
卷期号:89: 452-472 被引量:9
标识
DOI:10.1016/j.inffus.2022.09.005
摘要

Large DOF (depth-of-field) imaging with high SNR (signal-noise-ratio) is useful for applications such as machine vision and medical imaging. In traditional optical systems, DOF extension is always implemented at the cost of SNR. In this paper, we present a MPCAM (Multi-PSF Camera) system highly integrated with AF (auto-focus) function to realize both large DOF and high SNR imaging. MPCAM based on MPGAN (Multi-PSF Generative Adversarial Network) is first proposed to automatically extract multiple PSFs (point spread functions) and realize high fidelity image reconstruction by features fusion. The proposed end-to-end generative image fusion network is flexible and can be designed with different input dimensions for a given AF application, which is vital to circumvent the trade-off between DOF and SNR. We build a dataset containing 5000 raw images tailored to the proposed network by an off-the-shelf camera. Results show that our MPCAM system can produce images with average higher values than raw images over 4.625, and 0.061 in PNSR (peak signal to noise ratio), and SSIM (structure similarity) metrics, respectively. Moreover, compared to the classic and latest image fusion methods, the results also verify that our method has achieved comparable or even better performance. Due to its advance in high SNR and large DOF imaging, this novel, portable and inexpensive system is suitable for computational applications such as microscopic pathological diagnosis, domain-specific computational imaging and smartphone photography. The implementation code of MPGAN and dataset are available from https://www.kaggle.com/datasets/ktd970903/multi-psf-camera.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Uhazi发布了新的文献求助10
5秒前
Ava应助Wei采纳,获得20
24秒前
852应助Gaopkid采纳,获得10
25秒前
yuqinghui98完成签到 ,获得积分10
40秒前
sujingbo完成签到 ,获得积分10
1分钟前
1分钟前
Wei发布了新的文献求助20
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
Gaopkid发布了新的文献求助10
1分钟前
华老五完成签到,获得积分10
2分钟前
maher应助彭彭采纳,获得10
2分钟前
2分钟前
2分钟前
April完成签到 ,获得积分0
2分钟前
玛琳卡迪马完成签到,获得积分10
2分钟前
2分钟前
fu发布了新的文献求助10
2分钟前
3分钟前
方勇飞发布了新的文献求助10
3分钟前
3分钟前
野性的柠檬完成签到,获得积分10
3分钟前
3分钟前
9464完成签到 ,获得积分10
3分钟前
4分钟前
Criminology34应助fu采纳,获得10
4分钟前
4分钟前
FashionBoy应助Gaopkid采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
Gaopkid发布了新的文献求助10
4分钟前
5分钟前
5分钟前
姚老表完成签到,获得积分10
5分钟前
Criminology34举报Jupiter 1234求助涉嫌违规
5分钟前
Criminology34举报哆啦求助涉嫌违规
5分钟前
5分钟前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5386339
求助须知:如何正确求助?哪些是违规求助? 4508705
关于积分的说明 14030281
捐赠科研通 4419070
什么是DOI,文献DOI怎么找? 2427387
邀请新用户注册赠送积分活动 1420094
关于科研通互助平台的介绍 1398961