Integrated MPCAM: Multi-PSF learning for large depth-of-field computational imaging

计算机科学 人工智能 深度学习 计算机视觉 景深 图像融合 计算摄影 领域(数学) 光学(聚焦) 图像(数学) 图像处理 光学 数学 物理 纯数学
作者
Tingdong Kou,Qican Zhang,Chongyang Zhang,Tianyue He,Junfei Shen
出处
期刊:Information Fusion [Elsevier BV]
卷期号:89: 452-472 被引量:9
标识
DOI:10.1016/j.inffus.2022.09.005
摘要

Large DOF (depth-of-field) imaging with high SNR (signal-noise-ratio) is useful for applications such as machine vision and medical imaging. In traditional optical systems, DOF extension is always implemented at the cost of SNR. In this paper, we present a MPCAM (Multi-PSF Camera) system highly integrated with AF (auto-focus) function to realize both large DOF and high SNR imaging. MPCAM based on MPGAN (Multi-PSF Generative Adversarial Network) is first proposed to automatically extract multiple PSFs (point spread functions) and realize high fidelity image reconstruction by features fusion. The proposed end-to-end generative image fusion network is flexible and can be designed with different input dimensions for a given AF application, which is vital to circumvent the trade-off between DOF and SNR. We build a dataset containing 5000 raw images tailored to the proposed network by an off-the-shelf camera. Results show that our MPCAM system can produce images with average higher values than raw images over 4.625, and 0.061 in PNSR (peak signal to noise ratio), and SSIM (structure similarity) metrics, respectively. Moreover, compared to the classic and latest image fusion methods, the results also verify that our method has achieved comparable or even better performance. Due to its advance in high SNR and large DOF imaging, this novel, portable and inexpensive system is suitable for computational applications such as microscopic pathological diagnosis, domain-specific computational imaging and smartphone photography. The implementation code of MPGAN and dataset are available from https://www.kaggle.com/datasets/ktd970903/multi-psf-camera.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
含蓄的雪糕关注了科研通微信公众号
刚刚
宣谷雪发布了新的文献求助10
1秒前
自然鹭洋完成签到,获得积分20
2秒前
婷婷发布了新的文献求助10
2秒前
科研通AI5应助高兴灭龙采纳,获得10
2秒前
Owen应助Seven采纳,获得10
2秒前
fu桑完成签到,获得积分10
2秒前
3秒前
3秒前
Gbn发布了新的文献求助10
3秒前
共享精神应助min采纳,获得10
3秒前
Infinity完成签到,获得积分10
3秒前
马到成功完成签到,获得积分10
3秒前
CTCTCT6完成签到,获得积分20
4秒前
激情的饼干完成签到,获得积分10
4秒前
have勇气完成签到,获得积分10
4秒前
田様应助高兴的咖啡豆采纳,获得10
4秒前
4秒前
Yuxiao完成签到,获得积分10
5秒前
5秒前
狗狗发布了新的文献求助10
5秒前
Michelangelo_微风完成签到,获得积分10
5秒前
自然鹭洋发布了新的文献求助10
5秒前
幸福五完成签到,获得积分10
5秒前
大模型应助mxx采纳,获得10
5秒前
5秒前
所所应助伍声痕采纳,获得10
6秒前
包若烟完成签到,获得积分20
6秒前
6秒前
6秒前
SSL发布了新的文献求助10
6秒前
拼搏语薇完成签到,获得积分10
6秒前
6秒前
仁爱发卡发布了新的文献求助10
6秒前
7秒前
斯文文龙完成签到,获得积分10
7秒前
7秒前
沐风完成签到,获得积分10
7秒前
科研通AI5应助guozizi采纳,获得10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Refractory Castable Engineering 400
Modern Britain, 1750 to the Present (求助第2版!!!) 400
Social work values and ethics (6th ed.) 360
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5180491
求助须知:如何正确求助?哪些是违规求助? 4367921
关于积分的说明 13600823
捐赠科研通 4218743
什么是DOI,文献DOI怎么找? 2313774
邀请新用户注册赠送积分活动 1312578
关于科研通互助平台的介绍 1261128