Integrated MPCAM: Multi-PSF learning for large depth-of-field computational imaging

计算机科学 人工智能 深度学习 计算机视觉 景深 图像融合 计算摄影 领域(数学) 光学(聚焦) 图像(数学) 图像处理 光学 数学 物理 纯数学
作者
Tingdong Kou,Qican Zhang,Chongyang Zhang,Tianyue He,Junfei Shen
出处
期刊:Information Fusion [Elsevier]
卷期号:89: 452-472 被引量:9
标识
DOI:10.1016/j.inffus.2022.09.005
摘要

Large DOF (depth-of-field) imaging with high SNR (signal-noise-ratio) is useful for applications such as machine vision and medical imaging. In traditional optical systems, DOF extension is always implemented at the cost of SNR. In this paper, we present a MPCAM (Multi-PSF Camera) system highly integrated with AF (auto-focus) function to realize both large DOF and high SNR imaging. MPCAM based on MPGAN (Multi-PSF Generative Adversarial Network) is first proposed to automatically extract multiple PSFs (point spread functions) and realize high fidelity image reconstruction by features fusion. The proposed end-to-end generative image fusion network is flexible and can be designed with different input dimensions for a given AF application, which is vital to circumvent the trade-off between DOF and SNR. We build a dataset containing 5000 raw images tailored to the proposed network by an off-the-shelf camera. Results show that our MPCAM system can produce images with average higher values than raw images over 4.625, and 0.061 in PNSR (peak signal to noise ratio), and SSIM (structure similarity) metrics, respectively. Moreover, compared to the classic and latest image fusion methods, the results also verify that our method has achieved comparable or even better performance. Due to its advance in high SNR and large DOF imaging, this novel, portable and inexpensive system is suitable for computational applications such as microscopic pathological diagnosis, domain-specific computational imaging and smartphone photography. The implementation code of MPGAN and dataset are available from https://www.kaggle.com/datasets/ktd970903/multi-psf-camera.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨九斤Jenney完成签到 ,获得积分10
1秒前
2秒前
上原步梦完成签到,获得积分10
2秒前
5秒前
氯吡格蕾发布了新的文献求助10
7秒前
MoonByMoon应助von17采纳,获得10
7秒前
幻想曲应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得30
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
幻想曲应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
8秒前
石楠发布了新的文献求助10
8秒前
上原步梦发布了新的文献求助10
8秒前
10秒前
G哟X发布了新的文献求助10
10秒前
可乐完成签到 ,获得积分10
12秒前
13秒前
努力发布了新的文献求助10
15秒前
15秒前
wanci应助花笙米采纳,获得10
15秒前
天天快乐应助无情的之槐采纳,获得10
15秒前
科目三应助Susie大可采纳,获得10
16秒前
17秒前
18秒前
18秒前
JamesPei应助ZM采纳,获得10
19秒前
wxy发布了新的文献求助10
20秒前
天天快乐应助chunyi采纳,获得10
22秒前
ECHO发布了新的文献求助10
22秒前
23秒前
小蘑菇应助失眠的数据线采纳,获得10
23秒前
Z1发布了新的文献求助10
24秒前
Robin完成签到,获得积分10
25秒前
28秒前
shjyang完成签到,获得积分0
28秒前
28秒前
29秒前
高分求助中
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3417092
求助须知:如何正确求助?哪些是违规求助? 3018876
关于积分的说明 8885513
捐赠科研通 2706191
什么是DOI,文献DOI怎么找? 1484113
科研通“疑难数据库(出版商)”最低求助积分说明 685934
邀请新用户注册赠送积分活动 681108