A molecular framework underlying low-nitrogen-induced early leaf senescence in Arabidopsis thaliana

拟南芥 生物 衰老 细胞生物学 氮气 植物 突变体 基因 拟南芥 遗传学 化学 有机化学
作者
Hongmei Fan,Shuxuan Quan,Qing Ye,Lei Zhang,Wei Liu,Ning Zhu,Xiao‐Qi Zhang,Wenyuan Ruan,Keke Yi,Nigel M. Crawford,Yong Wang
出处
期刊:Molecular Plant [Elsevier]
卷期号:16 (4): 756-774 被引量:14
标识
DOI:10.1016/j.molp.2023.03.006
摘要

Abstract

Nitrogen (N) deficiency causes early leaf senescence, resulting in accelerated whole-plant maturation and severely reduced crop yield. However, the molecular mechanisms underlying N-deficiency-induced early leaf senescence remain unclear, even in the model species Arabidopsis thaliana. In this study, we identified Growth, Development and Splicing 1 (GDS1), a previously reported transcription factor, as a new regulator of nitrate (NO3) signaling by a yeast-one-hybrid screen using a NO3 enhancer fragment from the promoter of NRT2.1. We showed that GDS1 promotes NO3 signaling, absorption and assimilation by affecting the expression of multiple NO3 regulatory genes, including Nitrate Regulatory Gene2 (NRG2). Interestingly, we observed that gds1 mutants show early leaf senescence as well as reduced NO3 content and N uptake under N-deficient conditions. Further analyses indicated that GDS1 binds to the promoters of several senescence-related genes, including Phytochrome-Interacting Transcription Factors 4 and 5 (PIF4 and PIF5) and represses their expression. Interestingly, we found that N deficiency decreases GDS1 protein accumulation, and GDS1 could interact with Anaphase Promoting Complex Subunit 10 (APC10). Genetic and biochemical experiments demonstrated that Anaphase Promoting Complex or Cyclosome (APC/C) promotes the ubiquitination and degradation of GDS1 under N deficiency, resulting in loss of PIF4 and PIF5 repression and consequent early leaf senescence. Furthermore, we discovered that overexpression of GDS1 could delay leaf senescence and improve seed yield and N-use efficiency (NUE) in Arabidopsis. In summary, our study uncovers a molecular framework illustrating a new mechanism underlying low-N-induced early leaf senescence and provides potential targets for genetic improvement of crop varieties with increased yield and NUE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
redeem发布了新的文献求助10
刚刚
1秒前
rocky15应助蓝琉雨采纳,获得30
2秒前
2秒前
浅尝离白应助LXT采纳,获得20
2秒前
3秒前
兜兜完成签到,获得积分10
4秒前
5秒前
gc发布了新的文献求助10
6秒前
蛋炒饭不加蛋完成签到,获得积分10
6秒前
7秒前
卷网那个发布了新的文献求助10
7秒前
Zzz完成签到,获得积分10
7秒前
8秒前
Cola完成签到,获得积分10
8秒前
8秒前
小马甲应助YuanbinMao采纳,获得10
8秒前
kk发布了新的文献求助10
10秒前
爹爹发布了新的文献求助10
11秒前
活泼雁兰发布了新的文献求助30
12秒前
白华苍松发布了新的文献求助20
12秒前
13秒前
小徐哥哥真帅完成签到,获得积分20
14秒前
hope发布了新的文献求助10
14秒前
erhan7留下了新的社区评论
14秒前
小炸日记完成签到,获得积分10
14秒前
科研通AI2S应助尹雪儿采纳,获得10
14秒前
罗又柔应助尹雪儿采纳,获得10
14秒前
大个应助枳甜采纳,获得10
15秒前
gc完成签到,获得积分10
15秒前
Wells应助苹果树采纳,获得10
17秒前
慕青应助爹爹采纳,获得10
17秒前
只道寻常完成签到 ,获得积分10
17秒前
五十一笑声应助百里如雪采纳,获得10
17秒前
18秒前
大模型应助酷酷从雪采纳,获得10
18秒前
19秒前
在水一方应助兜兜采纳,获得10
20秒前
21秒前
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146135
求助须知:如何正确求助?哪些是违规求助? 2797529
关于积分的说明 7824671
捐赠科研通 2453925
什么是DOI,文献DOI怎么找? 1305932
科研通“疑难数据库(出版商)”最低求助积分说明 627598
版权声明 601503