Visual language integration: A survey and open challenges

计算机科学 任务(项目管理) 人工智能 人机交互 具身认知 组分(热力学) 特征(语言学) 深度学习 机器学习 系统工程 语言学 热力学 物理 工程类 哲学
作者
Sang-Min Park,Young-Gab Kim
出处
期刊:Computer Science Review [Elsevier]
卷期号:48: 100548-100548
标识
DOI:10.1016/j.cosrev.2023.100548
摘要

With the recent development of deep learning technology comes the wide use of artificial intelligence (AI) models in various domains. AI shows good performance for definite-purpose tasks, such as image recognition and text classification. The recognition performance for every single task has become more accurate than feature engineering, enabling more work that could not be done before. In addition, with the development of generation technology (e.g., GPT-3), AI models are showing stable performances in each recognition and generation task. However, not many studies have focused on how to integrate these models efficiently to achieve comprehensive human interaction. Each model grows in size with improved performance, thereby consequently requiring more computing power and more complicated designs to train than before. This requirement increases the complexity of each model and requires more paired data, making model integration difficult. This study provides a survey on visual language integration with a hierarchical approach for reviewing the recent trends that have already been performed on AI models among research communities as the interaction component. We also compare herein the strengths of existing AI models and integration approaches and the limitations they face. Furthermore, we discuss the current related issues and which research is needed for visual language integration. More specifically, we identify four aspects of visual language integration models: multimodal learning, multi-task learning, end-to-end learning, and embodiment for embodied visual language interaction. Finally, we discuss some current open issues and challenges and conclude our survey by giving possible future directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可萨利亚应助小瓶子采纳,获得10
2秒前
打打应助激动的士萧采纳,获得10
2秒前
yzy发布了新的文献求助10
2秒前
科研通AI2S应助俏皮不可采纳,获得10
3秒前
leisurelft发布了新的文献求助10
3秒前
好困应助友好似狮采纳,获得10
4秒前
Qing发布了新的文献求助10
5秒前
Laura567完成签到,获得积分10
5秒前
5秒前
难过冷玉完成签到,获得积分10
6秒前
zry发布了新的文献求助30
7秒前
nini完成签到,获得积分20
7秒前
小神完成签到,获得积分10
7秒前
7秒前
8秒前
科研通AI2S应助瘦瘦的寒珊采纳,获得10
8秒前
8秒前
梁彬完成签到,获得积分10
9秒前
9秒前
爆米花应助周新运采纳,获得10
9秒前
9秒前
9秒前
10秒前
10秒前
英勇剑完成签到 ,获得积分10
10秒前
10秒前
Suzanne完成签到,获得积分10
11秒前
11秒前
单纯玫瑰发布了新的文献求助20
13秒前
ZX801发布了新的文献求助10
14秒前
14秒前
科目三应助然@采纳,获得10
15秒前
北执发布了新的文献求助10
15秒前
zjj发布了新的文献求助10
15秒前
16秒前
jingyu应助咿咿呀呀采纳,获得10
16秒前
17秒前
Orange应助ABS采纳,获得10
17秒前
xiaozhu完成签到,获得积分20
17秒前
quhayley应助genoy采纳,获得10
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
Trace Fossils 1500
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148993
求助须知:如何正确求助?哪些是违规求助? 2800076
关于积分的说明 7838336
捐赠科研通 2457543
什么是DOI,文献DOI怎么找? 1307913
科研通“疑难数据库(出版商)”最低求助积分说明 628328
版权声明 601685