微流控
骨科手术
生物医学工程
计算机科学
纳米技术
生化工程
医学
工程类
材料科学
外科
作者
Miao Sun,Jiaxing Gong,Wushi Cui,Congsun Li,Mengfei Yu,Hua Ye,Zhanfeng Cui,Jing Chen,Yong He,An Liu,Huiming Wang
标识
DOI:10.1016/j.smaim.2022.07.001
摘要
With the development of modern medicine, the research methods of occurrence, development and treatment of orthopedic diseases are developing rapidly. The microenvironment provided by traditional orthopedic research methods differ considerably from the human body, resulting in poor or inconsistent conclusions in previous studies. Microfluidic technology has shown its advantages in the field of orthopedic research, especially in providing bionic mechanical stimulation environment. The microfluidic device can simulate the complex internal environment through the fine and complex structure and perfusion control system, and provide a stable, controllable and efficient culture system. Moreover, it can serve as a manufacturing device, which can produce bone grafts or bone like organs for tissue engineering with bionic structure. It can also simultaneously act as a detection device, which can realize high-throughput detection of small samples at low cost. In addition, we can establish in vitro physiological or pathological models on microfluidic systems to assist in the diagnosis and treatment of orthopedic diseases. This paper reviews the medical application of microfluidic devices in orthopedics.
科研通智能强力驱动
Strongly Powered by AbleSci AI