Comparison of Deep Learning and Classical Machine Learning Algorithms to Predict Post-operative Outcomes for Anterior Cervical Discectomy and Fusion Procedures with State-of-the-art Performance

医学 颈椎前路椎间盘切除融合术 椎间盘切除术 机器学习 脊柱融合术 人工智能 算法 融合 外科 腰椎 计算机科学 颈椎 语言学 哲学
作者
Adrian Rodrigues,Ethan Schonfeld,Kunal Varshneya,Martin N. Stienen,Victor E. Staartjes,Michael C. Jin,Anand Veeravagu
出处
期刊:Spine [Ovid Technologies (Wolters Kluwer)]
被引量:11
标识
DOI:10.1097/brs.0000000000004481
摘要

Study Design. Retrospective cohort. Objective. Due to Anterior cervical discectomy and fusion (ACDF) popularity, it is important to predict post-operative complications, unfavorable 90-day readmissions, and 2-year re-operations to improve surgical decision making, prognostication and planning. Summary of Background Data. Machine learning has been applied to predict post–operative complications for ACDF; however, studies were limited by sample size and model type. These studies achieved 0.70 AUC. Further approaches, not limited to ACDF, focused on specific complication types, and resulted in AUC between 0.70–0.76. Methods. The IBM MarketScan Commercial Claims and Encounters Database and Medicare Supplement were queried from 2007-2016 to identify adult patients who underwent an ACDF procedure (N=176,816). Traditional machine learning algorithms, logistic regression, support vector machines, were compared with deep neural networks to predict: 90-day post-operative complications, 90-day readmission, and 2-year reoperation. We further generated random deep learning model architectures and trained them on the 90-day complication task to approximate an upper bound. Lastly, using deep learning, we investigated the importance of each input variable for the prediction of 90-day post-operative complications in ACDF. Results. For the prediction of 90-day complication, 90-day readmission, and 2-year reoperation, the deep neural network-based models achieved area under the curve (AUC) of 0.832, 0.713, and 0.671. Logistic regression achieved AUCs of 0.820, 0.712, and 0.671. SVM approaches were significantly lower. The upper bound of deep learning performance was approximated as 0.832. Myelopathy, age, HIV, previous myocardial infarctions, obesity, and documentary weakness were found to be the strongest variable to predict 90-day post-operative complications. Conclusions. The deep neural network may be used to predict complications for clinical applications after multi-center validation. The results suggest limited added knowledge exists in interactions between the input variables used for this task. Future work should identify novel variables to increase predictive power.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
求知小生完成签到,获得积分10
刚刚
拂晓发布了新的文献求助10
1秒前
压力荧光碳点先锋完成签到,获得积分10
1秒前
Willer完成签到,获得积分10
1秒前
kk完成签到,获得积分10
1秒前
李爱国应助Nice采纳,获得10
2秒前
犹豫的怀蝶完成签到,获得积分10
2秒前
无限的高烽完成签到,获得积分10
2秒前
haha完成签到,获得积分10
2秒前
万能图书馆应助无糖零脂采纳,获得10
3秒前
小棠完成签到 ,获得积分10
3秒前
十个勤天完成签到,获得积分10
3秒前
4秒前
白茶的雪完成签到,获得积分10
4秒前
5秒前
你的笑慌乱了我的骄傲完成签到 ,获得积分10
5秒前
彭于晏应助关我屁事采纳,获得10
5秒前
6秒前
电闪完成签到,获得积分10
8秒前
Chris完成签到 ,获得积分0
8秒前
TXY发布了新的文献求助10
9秒前
薄荷梨完成签到 ,获得积分10
9秒前
繁荣的柏柳完成签到,获得积分0
12秒前
黑粉头头完成签到,获得积分10
12秒前
next完成签到,获得积分10
13秒前
啦啦啦完成签到,获得积分10
13秒前
zxcvbnm完成签到 ,获得积分10
13秒前
拂晓完成签到,获得积分10
13秒前
yiyi完成签到,获得积分10
14秒前
Xx丶完成签到,获得积分10
15秒前
yao完成签到,获得积分10
17秒前
sci来完成签到,获得积分10
19秒前
漠寒发布了新的文献求助10
19秒前
杨白秋完成签到,获得积分10
20秒前
豪杰完成签到,获得积分10
20秒前
期待未来的自己完成签到,获得积分10
21秒前
caozhi完成签到,获得积分10
22秒前
争气完成签到 ,获得积分10
23秒前
YOUYOU完成签到,获得积分10
23秒前
早起大王完成签到,获得积分10
24秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3477550
求助须知:如何正确求助?哪些是违规求助? 3068997
关于积分的说明 9110512
捐赠科研通 2760481
什么是DOI,文献DOI怎么找? 1514971
邀请新用户注册赠送积分活动 700509
科研通“疑难数据库(出版商)”最低求助积分说明 699631