Use of open-source object detection algorithms to detect Palmer amaranth (Amaranthus palmeri) in soybean

目标检测 苋菜 杂草 人工智能 算法 数学 模式识别(心理学) 统计 计算机科学 农学 生物
作者
Isaac Barnhart,Sarah Jane Lancaster,Douglas S. Goodin,Jess J. Spotanski,J. Anita Dille
出处
期刊:Weed Science [Cambridge University Press]
卷期号:70 (6): 648-662
标识
DOI:10.1017/wsc.2022.53
摘要

Abstract Site-specific weed management using open-source object detection algorithms could accurately detect weeds in cropping systems. We investigated the use of object detection algorithms to detect Palmer amaranth ( Amaranthus palmeri S. Watson) in soybean [ Glycine max (L.) Merr.]. The objectives were to (1) develop an annotated image database of A. palmeri and soybean to fine-tune object detection algorithms, (2) compare effectiveness of multiple open-source algorithms in detecting A. palmeri , and (3) evaluate the relationship between A. palmeri growth features and A. palmeri detection ability. Soybean field sites were established in Manhattan, KS, and Gypsum, KS, with natural populations of A. palmeri . A total of 1,108 and 392 images were taken aerially and at ground level, respectively, between May 27 and July 27, 2021. After image annotation, a total of 4,492 images were selected. Annotated images were used to fine-tune open-source faster regional convolutional (Faster R-CNN) and single-shot detector (SSD) algorithms using a Resnet backbone, as well as the “You Only Look Once” (YOLO) series algorithms. Results demonstrated that YOLO v. 5 achieved the highest mean average precision score of 0.77. For both A. palmeri and soybean detections within this algorithm, the highest F1 score was 0.72 when using a confidence threshold of 0.298. A lower confidence threshold of 0.15 increased the likelihood of species detection, but also increased the likelihood of false-positive detections. The trained YOLOv5 data set was used to identify A. palmeri in a data set paired with measured growth features. Linear regression models predicted that as A. palmeri densities increased and as A. palmeri height increased, precision, recall, and F1 scores of algorithms would decrease. We conclude that open-source algorithms such as YOLOv5 show great potential in detecting A. palmeri in soybean-cropping systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
XU发布了新的文献求助30
1秒前
2秒前
无私秋珊关注了科研通微信公众号
2秒前
星点完成签到 ,获得积分10
3秒前
WDWK发布了新的文献求助10
4秒前
小十一完成签到 ,获得积分10
4秒前
二掌柜完成签到,获得积分10
4秒前
5秒前
6秒前
6秒前
典雅储关注了科研通微信公众号
7秒前
7秒前
7秒前
还单身的香菇完成签到,获得积分10
8秒前
华仔应助淡淡的薄荷采纳,获得10
8秒前
11秒前
11秒前
pinwheel发布了新的文献求助10
12秒前
闹心发布了新的文献求助10
12秒前
13秒前
Georges-09完成签到,获得积分10
13秒前
novkoi发布了新的文献求助10
15秒前
瓶盖发布了新的文献求助10
15秒前
16秒前
叶强发布了新的文献求助10
16秒前
七曜发布了新的文献求助10
16秒前
赘婿应助关耳采纳,获得10
18秒前
chenwenjun4584完成签到,获得积分10
18秒前
活力鸡完成签到 ,获得积分10
19秒前
Lucas应助嘻嘻嘻采纳,获得10
19秒前
DLY677完成签到,获得积分10
19秒前
20秒前
Mrchen发布了新的文献求助10
22秒前
无私秋珊发布了新的文献求助10
25秒前
Erin完成签到,获得积分10
26秒前
011_wasd完成签到,获得积分10
27秒前
30秒前
31秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993971
求助须知:如何正确求助?哪些是违规求助? 3534571
关于积分的说明 11265961
捐赠科研通 3274483
什么是DOI,文献DOI怎么找? 1806363
邀请新用户注册赠送积分活动 883224
科研通“疑难数据库(出版商)”最低求助积分说明 809712