Use of open-source object detection algorithms to detect Palmer amaranth (Amaranthus palmeri) in soybean

目标检测 苋菜 杂草 人工智能 算法 数学 模式识别(心理学) 统计 计算机科学 农学 生物
作者
Isaac Barnhart,Sarah Jane Lancaster,Douglas S. Goodin,Jess J. Spotanski,J. Anita Dille
出处
期刊:Weed Science [Cambridge University Press]
卷期号:70 (6): 648-662
标识
DOI:10.1017/wsc.2022.53
摘要

Abstract Site-specific weed management using open-source object detection algorithms could accurately detect weeds in cropping systems. We investigated the use of object detection algorithms to detect Palmer amaranth ( Amaranthus palmeri S. Watson) in soybean [ Glycine max (L.) Merr.]. The objectives were to (1) develop an annotated image database of A. palmeri and soybean to fine-tune object detection algorithms, (2) compare effectiveness of multiple open-source algorithms in detecting A. palmeri , and (3) evaluate the relationship between A. palmeri growth features and A. palmeri detection ability. Soybean field sites were established in Manhattan, KS, and Gypsum, KS, with natural populations of A. palmeri . A total of 1,108 and 392 images were taken aerially and at ground level, respectively, between May 27 and July 27, 2021. After image annotation, a total of 4,492 images were selected. Annotated images were used to fine-tune open-source faster regional convolutional (Faster R-CNN) and single-shot detector (SSD) algorithms using a Resnet backbone, as well as the “You Only Look Once” (YOLO) series algorithms. Results demonstrated that YOLO v. 5 achieved the highest mean average precision score of 0.77. For both A. palmeri and soybean detections within this algorithm, the highest F1 score was 0.72 when using a confidence threshold of 0.298. A lower confidence threshold of 0.15 increased the likelihood of species detection, but also increased the likelihood of false-positive detections. The trained YOLOv5 data set was used to identify A. palmeri in a data set paired with measured growth features. Linear regression models predicted that as A. palmeri densities increased and as A. palmeri height increased, precision, recall, and F1 scores of algorithms would decrease. We conclude that open-source algorithms such as YOLOv5 show great potential in detecting A. palmeri in soybean-cropping systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
麻辣爆锅发布了新的文献求助20
刚刚
冷静的衣发布了新的文献求助10
刚刚
骑猪逛超市完成签到 ,获得积分10
刚刚
思源应助乆乆乆乆采纳,获得10
刚刚
聂璐燕发布了新的文献求助10
刚刚
ye完成签到 ,获得积分10
1秒前
1秒前
sober完成签到 ,获得积分10
1秒前
wongcheng完成签到,获得积分10
2秒前
HHH发布了新的文献求助10
2秒前
2秒前
学术laji发布了新的文献求助10
2秒前
舒心凡举报曹中明求助涉嫌违规
3秒前
4秒前
zhonglv7应助David采纳,获得10
4秒前
4秒前
4秒前
小二郎应助yang采纳,获得10
5秒前
6秒前
6秒前
向日葵1发布了新的文献求助10
6秒前
6秒前
7秒前
sjy发布了新的文献求助10
7秒前
热心的乌冬面完成签到,获得积分10
8秒前
文静萤完成签到,获得积分10
8秒前
卡戎完成签到 ,获得积分10
9秒前
黄哥87发布了新的文献求助10
9秒前
9秒前
9秒前
笨笨黄蜂完成签到,获得积分10
9秒前
Belinda发布了新的文献求助10
10秒前
10秒前
雒雨欣发布了新的文献求助10
10秒前
11秒前
爆米花应助瘾9采纳,获得10
11秒前
FashionBoy应助NANA采纳,获得10
11秒前
11秒前
陈杰发布了新的文献求助10
12秒前
美好的涑完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609676
求助须知:如何正确求助?哪些是违规求助? 4694236
关于积分的说明 14881785
捐赠科研通 4720035
什么是DOI,文献DOI怎么找? 2544827
邀请新用户注册赠送积分活动 1509694
关于科研通互助平台的介绍 1472981