Use of open-source object detection algorithms to detect Palmer amaranth (Amaranthus palmeri) in soybean

目标检测 苋菜 杂草 人工智能 算法 数学 模式识别(心理学) 统计 计算机科学 农学 生物
作者
Isaac Barnhart,Sarah Jane Lancaster,Douglas S. Goodin,Jess J. Spotanski,J. Anita Dille
出处
期刊:Weed Science [Cambridge University Press]
卷期号:70 (6): 648-662
标识
DOI:10.1017/wsc.2022.53
摘要

Abstract Site-specific weed management using open-source object detection algorithms could accurately detect weeds in cropping systems. We investigated the use of object detection algorithms to detect Palmer amaranth ( Amaranthus palmeri S. Watson) in soybean [ Glycine max (L.) Merr.]. The objectives were to (1) develop an annotated image database of A. palmeri and soybean to fine-tune object detection algorithms, (2) compare effectiveness of multiple open-source algorithms in detecting A. palmeri , and (3) evaluate the relationship between A. palmeri growth features and A. palmeri detection ability. Soybean field sites were established in Manhattan, KS, and Gypsum, KS, with natural populations of A. palmeri . A total of 1,108 and 392 images were taken aerially and at ground level, respectively, between May 27 and July 27, 2021. After image annotation, a total of 4,492 images were selected. Annotated images were used to fine-tune open-source faster regional convolutional (Faster R-CNN) and single-shot detector (SSD) algorithms using a Resnet backbone, as well as the “You Only Look Once” (YOLO) series algorithms. Results demonstrated that YOLO v. 5 achieved the highest mean average precision score of 0.77. For both A. palmeri and soybean detections within this algorithm, the highest F1 score was 0.72 when using a confidence threshold of 0.298. A lower confidence threshold of 0.15 increased the likelihood of species detection, but also increased the likelihood of false-positive detections. The trained YOLOv5 data set was used to identify A. palmeri in a data set paired with measured growth features. Linear regression models predicted that as A. palmeri densities increased and as A. palmeri height increased, precision, recall, and F1 scores of algorithms would decrease. We conclude that open-source algorithms such as YOLOv5 show great potential in detecting A. palmeri in soybean-cropping systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ossantu发布了新的文献求助10
1秒前
2秒前
4秒前
ZQP发布了新的文献求助10
5秒前
hdkkty完成签到,获得积分20
5秒前
冷酷的雅寒完成签到,获得积分10
6秒前
7秒前
Ava应助ZQP采纳,获得10
9秒前
11秒前
李爱国应助wisteety采纳,获得10
11秒前
Jemma31发布了新的文献求助30
11秒前
Akim应助lutra采纳,获得30
14秒前
xiamu发布了新的文献求助10
16秒前
友好碧完成签到 ,获得积分10
20秒前
youyou驳回了赘婿应助
21秒前
21秒前
科研通AI2S应助尛瞐慶成采纳,获得10
22秒前
22秒前
ajiduo发布了新的文献求助10
23秒前
66完成签到 ,获得积分10
24秒前
云里完成签到,获得积分10
24秒前
Mztt完成签到,获得积分10
25秒前
27秒前
Lucas应助研友_8oBW4Z采纳,获得10
27秒前
echo发布了新的文献求助10
27秒前
爽_关注了科研通微信公众号
28秒前
辉辉发布了新的文献求助10
28秒前
29秒前
lutra完成签到,获得积分10
29秒前
每天不烦恼完成签到 ,获得积分10
29秒前
eaderson完成签到,获得积分20
32秒前
32秒前
小二郎应助echo采纳,获得10
33秒前
34秒前
完美世界应助ajiduo采纳,获得10
34秒前
34秒前
35秒前
38秒前
39秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161007
求助须知:如何正确求助?哪些是违规求助? 2812311
关于积分的说明 7895133
捐赠科研通 2471181
什么是DOI,文献DOI怎么找? 1315908
科研通“疑难数据库(出版商)”最低求助积分说明 631071
版权声明 602086