A DenseNet Model for Joint Activity Recognition and Indoor Localization

假种皮 计算机科学 深度学习 人工智能 活动识别 接头(建筑物) 基线(sea) 超参数 机器学习 特征(语言学) 模式识别(心理学) 工程类 海洋学 生物 地质学 哲学 园艺 语言学 建筑工程
作者
Ade Irawan,Adam Marsono Putra,Hani Ramadhan
标识
DOI:10.1109/iaict55358.2022.9887407
摘要

Activity recognition and indoor positioning (ARIL) tasks have benefited society in various areas, such as surveillance, healthcare, and entertainment. The emerging development of ARIL employs the usage of Wi-Fi Channel State Information (CSI) as input instead of Received Signal Strength Indicator (RSSI), which is often missing and disturbed. ResNet, as one of the Deep Learning models, can perform the joint task of ARIL with high accuracy. However, due to the rapid development in Deep Learning, other newer models have the potential to improve the quality of ARIL rather than ResNet, which has a large number of training parameters. We propose applying a DenseNet model as a new feature extractor and Deep Learning architecture for the joint task of ARIL with CSI data. The architecture of DenseNet can improve the quality of ARIL thanks to the dense block, which can extract more relevant features from CSI data efficiently. We demonstrate that our proposed DenseNet model for joint ARIL improved the overall accuracy and the efficiency of the Deep Learning model using a real-world CSI dataset. Using a real-world CSI dataset, our proposed model outperforms the baseline by 4.16% on activity recognition and 1.04% on indoor localization. With hyperparameter tuning, we further reduce the trainable parameters by 64.29%, also 27.88% less than the baseline, with the cost of slightly decreasing the performance on activity recognition but increasing the performance on indoor localization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Violet完成签到,获得积分10
刚刚
心斋完成签到,获得积分10
刚刚
二闲完成签到,获得积分10
刚刚
hi完成签到,获得积分10
刚刚
芒果豆豆完成签到,获得积分10
1秒前
蔚然然完成签到,获得积分10
1秒前
13344发布了新的文献求助10
2秒前
不穷知识完成签到,获得积分10
3秒前
符从丹完成签到,获得积分10
3秒前
梦华完成签到 ,获得积分10
4秒前
杨建航完成签到,获得积分10
4秒前
张子怡完成签到 ,获得积分10
4秒前
核桃nut完成签到,获得积分10
5秒前
淡然白萱完成签到,获得积分10
5秒前
义气的青枫完成签到 ,获得积分10
6秒前
6秒前
permanent完成签到,获得积分10
6秒前
灰灰完成签到,获得积分10
7秒前
小迟完成签到 ,获得积分10
7秒前
wzy完成签到,获得积分10
7秒前
Scherbatsky完成签到,获得积分10
7秒前
nature完成签到,获得积分10
7秒前
8秒前
hsss完成签到,获得积分10
9秒前
科研通AI6应助Misaka采纳,获得10
9秒前
10秒前
魔幻的小蘑菇完成签到 ,获得积分10
10秒前
wyt完成签到,获得积分10
11秒前
冬雪完成签到 ,获得积分10
12秒前
tang完成签到,获得积分10
12秒前
12秒前
自然千山完成签到,获得积分10
12秒前
13秒前
黄景滨完成签到 ,获得积分10
13秒前
sonicker完成签到 ,获得积分10
13秒前
liang19640908完成签到 ,获得积分10
13秒前
14秒前
mark完成签到,获得积分10
14秒前
整齐醉冬完成签到,获得积分10
14秒前
Garrett完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401990
求助须知:如何正确求助?哪些是违规求助? 4520650
关于积分的说明 14080494
捐赠科研通 4434084
什么是DOI,文献DOI怎么找? 2434382
邀请新用户注册赠送积分活动 1426601
关于科研通互助平台的介绍 1405349