A DenseNet Model for Joint Activity Recognition and Indoor Localization

假种皮 计算机科学 深度学习 人工智能 活动识别 接头(建筑物) 基线(sea) 超参数 机器学习 特征(语言学) 模式识别(心理学) 工程类 海洋学 生物 地质学 哲学 园艺 语言学 建筑工程
作者
Ade Irawan,Adam Marsono Putra,Hani Ramadhan
标识
DOI:10.1109/iaict55358.2022.9887407
摘要

Activity recognition and indoor positioning (ARIL) tasks have benefited society in various areas, such as surveillance, healthcare, and entertainment. The emerging development of ARIL employs the usage of Wi-Fi Channel State Information (CSI) as input instead of Received Signal Strength Indicator (RSSI), which is often missing and disturbed. ResNet, as one of the Deep Learning models, can perform the joint task of ARIL with high accuracy. However, due to the rapid development in Deep Learning, other newer models have the potential to improve the quality of ARIL rather than ResNet, which has a large number of training parameters. We propose applying a DenseNet model as a new feature extractor and Deep Learning architecture for the joint task of ARIL with CSI data. The architecture of DenseNet can improve the quality of ARIL thanks to the dense block, which can extract more relevant features from CSI data efficiently. We demonstrate that our proposed DenseNet model for joint ARIL improved the overall accuracy and the efficiency of the Deep Learning model using a real-world CSI dataset. Using a real-world CSI dataset, our proposed model outperforms the baseline by 4.16% on activity recognition and 1.04% on indoor localization. With hyperparameter tuning, we further reduce the trainable parameters by 64.29%, also 27.88% less than the baseline, with the cost of slightly decreasing the performance on activity recognition but increasing the performance on indoor localization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
w婷完成签到 ,获得积分10
1秒前
lingkai完成签到 ,获得积分10
3秒前
我请问呢发布了新的文献求助10
9秒前
娃娃菜妮完成签到 ,获得积分10
13秒前
wcy完成签到 ,获得积分10
17秒前
MM发布了新的文献求助30
18秒前
优娜完成签到 ,获得积分10
20秒前
CipherSage应助健壮念寒采纳,获得10
20秒前
27秒前
小二郎应助英俊智宸采纳,获得10
37秒前
斯文败类应助SuyingGuo采纳,获得10
37秒前
量子星尘发布了新的文献求助10
39秒前
花海完成签到 ,获得积分10
44秒前
45秒前
46秒前
MM发布了新的文献求助30
49秒前
英俊智宸发布了新的文献求助10
49秒前
51秒前
sci完成签到 ,获得积分10
51秒前
Strongly发布了新的文献求助10
52秒前
科研通AI6应助科研通管家采纳,获得10
52秒前
53秒前
Aluhaer应助科研通管家采纳,获得150
53秒前
wanci应助科研通管家采纳,获得10
53秒前
清爽尔岚完成签到 ,获得积分10
55秒前
二中所长发布了新的文献求助10
58秒前
guo完成签到,获得积分10
1分钟前
朱婷完成签到 ,获得积分10
1分钟前
冬雪完成签到 ,获得积分10
1分钟前
qing完成签到 ,获得积分10
1分钟前
1分钟前
cmh完成签到 ,获得积分10
1分钟前
英俊智宸完成签到,获得积分10
1分钟前
韭菜盒子发布了新的文献求助10
1分钟前
逢场作戱__完成签到 ,获得积分10
1分钟前
1分钟前
慕青应助韭菜盒子采纳,获得10
1分钟前
健壮念寒发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5139327
求助须知:如何正确求助?哪些是违规求助? 4338303
关于积分的说明 13512484
捐赠科研通 4177497
什么是DOI,文献DOI怎么找? 2290823
邀请新用户注册赠送积分活动 1291325
关于科研通互助平台的介绍 1233611