A DenseNet Model for Joint Activity Recognition and Indoor Localization

假种皮 计算机科学 深度学习 人工智能 活动识别 接头(建筑物) 基线(sea) 超参数 机器学习 特征(语言学) 模式识别(心理学) 工程类 海洋学 生物 地质学 哲学 园艺 语言学 建筑工程
作者
Ade Irawan,Adam Marsono Putra,Hani Ramadhan
标识
DOI:10.1109/iaict55358.2022.9887407
摘要

Activity recognition and indoor positioning (ARIL) tasks have benefited society in various areas, such as surveillance, healthcare, and entertainment. The emerging development of ARIL employs the usage of Wi-Fi Channel State Information (CSI) as input instead of Received Signal Strength Indicator (RSSI), which is often missing and disturbed. ResNet, as one of the Deep Learning models, can perform the joint task of ARIL with high accuracy. However, due to the rapid development in Deep Learning, other newer models have the potential to improve the quality of ARIL rather than ResNet, which has a large number of training parameters. We propose applying a DenseNet model as a new feature extractor and Deep Learning architecture for the joint task of ARIL with CSI data. The architecture of DenseNet can improve the quality of ARIL thanks to the dense block, which can extract more relevant features from CSI data efficiently. We demonstrate that our proposed DenseNet model for joint ARIL improved the overall accuracy and the efficiency of the Deep Learning model using a real-world CSI dataset. Using a real-world CSI dataset, our proposed model outperforms the baseline by 4.16% on activity recognition and 1.04% on indoor localization. With hyperparameter tuning, we further reduce the trainable parameters by 64.29%, also 27.88% less than the baseline, with the cost of slightly decreasing the performance on activity recognition but increasing the performance on indoor localization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jau完成签到,获得积分0
1秒前
1秒前
Ava应助hutian采纳,获得10
3秒前
4秒前
一顿吃不饱完成签到,获得积分0
4秒前
行路1完成签到 ,获得积分10
6秒前
肖果完成签到 ,获得积分10
6秒前
6秒前
小白完成签到,获得积分10
6秒前
Hly完成签到,获得积分20
7秒前
feilu应助xwp采纳,获得10
8秒前
mosile发布了新的文献求助10
9秒前
眯眯眼的衬衫应助蜘蛛侠采纳,获得10
9秒前
冷静剑成完成签到,获得积分10
10秒前
10秒前
11秒前
迷路安雁完成签到 ,获得积分10
11秒前
siu完成签到 ,获得积分10
12秒前
舒心台灯完成签到,获得积分10
12秒前
扬帆完成签到 ,获得积分10
13秒前
xinjiasuki完成签到 ,获得积分10
13秒前
FartKing完成签到,获得积分10
13秒前
13秒前
bestkomorebi发布了新的文献求助10
13秒前
小马甲应助刘星星采纳,获得10
13秒前
听雪楼发布了新的文献求助10
13秒前
hutian完成签到,获得积分10
13秒前
14秒前
Hello应助天玄一刀采纳,获得10
15秒前
古德day发布了新的文献求助10
15秒前
虎虎虎完成签到,获得积分10
16秒前
mmy完成签到 ,获得积分10
16秒前
FartKing发布了新的文献求助10
16秒前
扬帆关注了科研通微信公众号
18秒前
hutian发布了新的文献求助10
18秒前
不懈奋进应助yjj采纳,获得30
19秒前
顺利一德完成签到,获得积分10
19秒前
mosile完成签到,获得积分10
21秒前
小二郎应助李某某采纳,获得10
21秒前
天天快乐应助嘿嘿嘿采纳,获得10
22秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464156
求助须知:如何正确求助?哪些是违规求助? 3057470
关于积分的说明 9057304
捐赠科研通 2747508
什么是DOI,文献DOI怎么找? 1507390
科研通“疑难数据库(出版商)”最低求助积分说明 696514
邀请新用户注册赠送积分活动 696062