清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Field evaluation of a random forest activity classifier for wrist-worn accelerometer data

加速度计 随机森林 手腕 分类器(UML) 计算机科学 活动识别 交叉验证 活动记录 日常生活活动 物理医学与康复 活动监视器 人工智能 机器学习 体力活动 医学 数学 物理疗法 昼夜节律 内分泌学 操作系统 放射科
作者
Toby Pavey,Nicholas D. Gilson,Sjaan R. Gomersall,Bronwyn Clark,Stewart G. Trost
出处
期刊:Journal of Science and Medicine in Sport [Elsevier]
卷期号:20 (1): 75-80 被引量:144
标识
DOI:10.1016/j.jsams.2016.06.003
摘要

Objectives Wrist-worn accelerometers are convenient to wear and associated with greater wear-time compliance. Previous work has generally relied on choreographed activity trials to train and test classification models. However, validity in free-living contexts is starting to emerge. Study aims were: (1) train and test a random forest activity classifier for wrist accelerometer data; and (2) determine if models trained on laboratory data perform well under free-living conditions. Design Twenty-one participants (mean age = 27.6 ± 6.2) completed seven lab-based activity trials and a 24 h free-living trial (N = 16). Methods Participants wore a GENEActiv monitor on the non-dominant wrist. Classification models recognising four activity classes (sedentary, stationary+, walking, and running) were trained using time and frequency domain features extracted from 10-s non-overlapping windows. Model performance was evaluated using leave-one-out-cross-validation. Models were implemented using the randomForest package within R. Classifier accuracy during the 24 h free living trial was evaluated by calculating agreement with concurrently worn activPAL monitors. Results Overall classification accuracy for the random forest algorithm was 92.7%. Recognition accuracy for sedentary, stationary+, walking, and running was 80.1%, 95.7%, 91.7%, and 93.7%, respectively for the laboratory protocol. Agreement with the activPAL data (stepping vs. non-stepping) during the 24 h free-living trial was excellent and, on average, exceeded 90%. The ICC for stepping time was 0.92 (95% CI = 0.75–0.97). However, sensitivity and positive predictive values were modest. Mean bias was 10.3 min/d (95% LOA = −46.0 to 25.4 min/d). Conclusions The random forest classifier for wrist accelerometer data yielded accurate group-level predictions under controlled conditions, but was less accurate at identifying stepping verse non-stepping behaviour in free living conditions Future studies should conduct more rigorous field-based evaluations using observation as a criterion measure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
keyan123完成签到,获得积分10
4秒前
Wang完成签到 ,获得积分20
5秒前
imi完成签到 ,获得积分10
25秒前
搬砖的化学男完成签到 ,获得积分0
29秒前
33秒前
wwe完成签到,获得积分10
34秒前
maggiexjl发布了新的文献求助20
38秒前
科研通AI2S应助jlwang采纳,获得10
55秒前
疯狂吃辣完成签到 ,获得积分10
1分钟前
doreen完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
西瓜发布了新的文献求助10
1分钟前
moroa完成签到,获得积分10
2分钟前
科研通AI2S应助jlwang采纳,获得10
2分钟前
无悔完成签到 ,获得积分10
2分钟前
3分钟前
科研张完成签到 ,获得积分10
4分钟前
4分钟前
彤光赫显完成签到 ,获得积分10
4分钟前
jlwang完成签到,获得积分10
4分钟前
wodetaiyangLLL完成签到 ,获得积分10
4分钟前
4分钟前
生动的豪英完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得20
4分钟前
5分钟前
oaoalaa完成签到 ,获得积分10
5分钟前
DJ_Tokyo完成签到,获得积分10
5分钟前
qcck完成签到,获得积分10
5分钟前
潘fujun完成签到 ,获得积分10
6分钟前
黄沙漠完成签到 ,获得积分10
6分钟前
大意的晓亦完成签到 ,获得积分10
6分钟前
蝴蝶完成签到 ,获得积分10
6分钟前
小熊猫完成签到,获得积分10
6分钟前
7分钟前
zai完成签到 ,获得积分20
7分钟前
123发布了新的文献求助10
7分钟前
英喆完成签到 ,获得积分10
8分钟前
Tiffiany完成签到 ,获得积分10
8分钟前
123发布了新的文献求助10
8分钟前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
encyclopedia of computational mechanics,2 edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268785
求助须知:如何正确求助?哪些是违规求助? 2908238
关于积分的说明 8344915
捐赠科研通 2578564
什么是DOI,文献DOI怎么找? 1402210
科研通“疑难数据库(出版商)”最低求助积分说明 655352
邀请新用户注册赠送积分活动 634490