锂(药物)
材料科学
快离子导体
导电体
电导率
功率密度
内阻
储能
导线
功率(物理)
纳米技术
电池(电)
热力学
电极
化学
复合材料
电解质
物理
物理化学
医学
内分泌学
作者
Yuki Kato,Satoshi Hori,Toshiya Saito,Kota Suzuki,Masaaki Hirayama,Akio Mitsui,Masao Yonemura,Hideki Iba,Ryoji Kanno
出处
期刊:Nature Energy
[Springer Nature]
日期:2016-03-21
卷期号:1 (4)
被引量:2750
标识
DOI:10.1038/nenergy.2016.30
摘要
Compared with lithium-ion batteries with liquid electrolytes, all-solid-state batteries offer an attractive option owing to their potential in improving the safety and achieving both high power and high energy densities. Despite extensive research efforts, the development of all-solid-state batteries still falls short of expectation largely because of the lack of suitable candidate materials for the electrolyte required for practical applications. Here we report lithium superionic conductors with an exceptionally high conductivity (25 mS cm−1 for Li9.54Si1.74P1.44S11.7Cl0.3), as well as high stability ( ∼0 V versus Li metal for Li9.6P3S12). A fabricated all-solid-state cell based on this lithium conductor is found to have very small internal resistance, especially at 100 ∘C. The cell possesses high specific power that is superior to that of conventional cells with liquid electrolytes. Stable cycling with a high current density of 18 C (charging/discharging in just three minutes; where C is the C-rate) is also demonstrated. The development of all-solid-state batteries requires fast lithium conductors. Here, the authors report a lithium compound, Li9.54Si1.74P1.44S11.7Cl0.3, with an exceptionally high conductivity and demonstrate that all-solid-state batteries based on the compound have high power densities.
科研通智能强力驱动
Strongly Powered by AbleSci AI