Clinical Trials: Odds Ratios and Multiple Regression Models-Why and How to Assess Them

医学 逻辑回归 优势比 置信区间 统计 回归分析 回归 临床试验 可能性 内科学 数学
作者
Mohamad Sobh,Ton J. Cleophas,Amel Hadj-Chaib,Aeilko H. Zwinderman
出处
期刊:American Journal of Therapeutics 卷期号:15 (1): 44-52 被引量:5
标识
DOI:10.1097/mjt.0b013e3180ed80bf
摘要

Odds ratios (ORs), unlike chi2 tests, provide direct insight into the strength of the relationship between treatment modalities and treatment effects. Multiple regression models can reduce the data spread due to certain patient characteristics and thus improve the precision of the treatment comparison. Despite these advantages, the use of these methods in clinical trials is relatively uncommon. Our objectives were (1) to emphasize the great potential of ORs and multiple regression models as a basis of modern methods; (2) to illustrate their ease of use; and (3) to familiarize nonmathematical readers with these important methods. Advantages of ORs are multiple. (1) They describe the probability that people with a certain treatment will have an event, versus those without the treatment, and are therefore a welcome alternative to the widely used chi2 tests for analyzing binary data in clinical trials. (2) statistical software of ORs is widely available. (3) Computations using risk ratios (RRs) are less sensitive than those using ORs. (4) ORs are the basis for modern methods such as meta-analyses, propensity scores, logistic regression, and Cox regression. For analysis, logarithms of the ORs have to be used; results are obtained by calculating antilogarithms. A limitation of the ORs is that they present relative benefits but not absolute benefits. ORs, despite a fairly complex mathematical background, are easy to use, even for nonmathematicians. Both linear and logistic regression models can be adequately applied for the purpose of improving precision of parameter estimates such as treatment effects. We caution that, although application of these models is very easy with computer programs widely available, the fit of the regression models should always be carefully checked, and the covariate selection should be carefully considered and sparse. We do hope that this article will stimulate clinical investigators to use ORs and multiple regression models more often.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
feng完成签到,获得积分10
1秒前
www发布了新的文献求助10
3秒前
3秒前
跳跃的如彤完成签到,获得积分20
4秒前
lemon发布了新的文献求助10
4秒前
隐形曼青应助咚咚采纳,获得10
6秒前
monere应助skyler采纳,获得10
7秒前
香蕉觅云应助鱼新碟采纳,获得10
7秒前
不知道发布了新的文献求助10
7秒前
成就大白菜真实的钥匙完成签到 ,获得积分10
9秒前
852应助随便采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
9秒前
田様应助科研通管家采纳,获得10
9秒前
zhongjiaweiv完成签到,获得积分20
10秒前
11秒前
传奇3应助嘎嘎采纳,获得10
11秒前
12秒前
阿桑发布了新的文献求助10
14秒前
Georges-09发布了新的文献求助10
16秒前
Lucas应助鱼新碟采纳,获得10
17秒前
科研通AI2S应助dmeng采纳,获得10
17秒前
哭泣嵩发布了新的文献求助10
18秒前
眯眯眼的静柏完成签到,获得积分10
18秒前
www完成签到,获得积分10
20秒前
21秒前
22秒前
23秒前
笑点低衬衫完成签到 ,获得积分10
26秒前
在水一方应助追寻的觅云采纳,获得10
27秒前
Vicky发布了新的文献求助10
27秒前
领导范儿应助鱼新碟采纳,获得10
28秒前
坚持到底完成签到,获得积分10
30秒前
充电宝应助大清采纳,获得10
33秒前
35秒前
36秒前
yin发布了新的文献求助10
36秒前
38秒前
yxy发布了新的文献求助10
39秒前
41秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243639
求助须知:如何正确求助?哪些是违规求助? 2887516
关于积分的说明 8248820
捐赠科研通 2556206
什么是DOI,文献DOI怎么找? 1384291
科研通“疑难数据库(出版商)”最低求助积分说明 649827
邀请新用户注册赠送积分活动 625760