Clinical Trials: Odds Ratios and Multiple Regression Models-Why and How to Assess Them

医学 逻辑回归 优势比 置信区间 统计 回归分析 回归 临床试验 可能性 内科学 数学
作者
Mohamad Sobh,Ton J. Cleophas,Amel Hadj-Chaib,Aeilko H. Zwinderman
出处
期刊:American Journal of Therapeutics [Lippincott Williams & Wilkins]
卷期号:15 (1): 44-52 被引量:5
标识
DOI:10.1097/mjt.0b013e3180ed80bf
摘要

Odds ratios (ORs), unlike chi2 tests, provide direct insight into the strength of the relationship between treatment modalities and treatment effects. Multiple regression models can reduce the data spread due to certain patient characteristics and thus improve the precision of the treatment comparison. Despite these advantages, the use of these methods in clinical trials is relatively uncommon. Our objectives were (1) to emphasize the great potential of ORs and multiple regression models as a basis of modern methods; (2) to illustrate their ease of use; and (3) to familiarize nonmathematical readers with these important methods. Advantages of ORs are multiple. (1) They describe the probability that people with a certain treatment will have an event, versus those without the treatment, and are therefore a welcome alternative to the widely used chi2 tests for analyzing binary data in clinical trials. (2) statistical software of ORs is widely available. (3) Computations using risk ratios (RRs) are less sensitive than those using ORs. (4) ORs are the basis for modern methods such as meta-analyses, propensity scores, logistic regression, and Cox regression. For analysis, logarithms of the ORs have to be used; results are obtained by calculating antilogarithms. A limitation of the ORs is that they present relative benefits but not absolute benefits. ORs, despite a fairly complex mathematical background, are easy to use, even for nonmathematicians. Both linear and logistic regression models can be adequately applied for the purpose of improving precision of parameter estimates such as treatment effects. We caution that, although application of these models is very easy with computer programs widely available, the fit of the regression models should always be carefully checked, and the covariate selection should be carefully considered and sparse. We do hope that this article will stimulate clinical investigators to use ORs and multiple regression models more often.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
过时的毛豆完成签到,获得积分10
4秒前
Eazin完成签到,获得积分10
5秒前
11完成签到,获得积分10
7秒前
酷酷小子发布了新的文献求助10
8秒前
刘慧鑫发布了新的文献求助20
11秒前
研友_VZG7GZ应助jjj采纳,获得10
11秒前
12秒前
13秒前
WD发布了新的文献求助10
17秒前
sprite发布了新的文献求助20
18秒前
19秒前
20秒前
HHHAN发布了新的文献求助10
20秒前
地表飞猪应助zychaos采纳,获得10
22秒前
大模型应助微笑的语芙采纳,获得10
24秒前
田様应助zzzzzz采纳,获得10
24秒前
25秒前
王晓静完成签到 ,获得积分10
26秒前
27秒前
顾矜应助时安采纳,获得10
27秒前
nv完成签到,获得积分10
28秒前
烟花应助回鱼采纳,获得10
28秒前
狡猾的菠萝完成签到 ,获得积分10
28秒前
31秒前
斯文败类应助炫哥IRIS采纳,获得10
31秒前
杜杨帆发布了新的文献求助10
32秒前
冷艳的友瑶完成签到,获得积分10
33秒前
33秒前
脑洞疼应助要吃虾饺吗采纳,获得30
34秒前
34秒前
li发布了新的文献求助30
36秒前
Owen应助科研通管家采纳,获得10
37秒前
科研通AI5应助科研通管家采纳,获得10
37秒前
不懈奋进应助科研通管家采纳,获得30
37秒前
SYLH应助科研通管家采纳,获得10
37秒前
SYLH应助科研通管家采纳,获得10
37秒前
SYLH应助科研通管家采纳,获得10
37秒前
慕青应助科研通管家采纳,获得10
38秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979719
求助须知:如何正确求助?哪些是违规求助? 3523760
关于积分的说明 11218505
捐赠科研通 3261224
什么是DOI,文献DOI怎么找? 1800507
邀请新用户注册赠送积分活动 879117
科研通“疑难数据库(出版商)”最低求助积分说明 807182