Clinical Trials: Odds Ratios and Multiple Regression Models-Why and How to Assess Them

医学 逻辑回归 优势比 置信区间 统计 回归分析 回归 临床试验 可能性 内科学 数学
作者
Mohamad Sobh,Ton J. Cleophas,Amel Hadj-Chaib,Aeilko H. Zwinderman
出处
期刊:American Journal of Therapeutics [Lippincott Williams & Wilkins]
卷期号:15 (1): 44-52 被引量:5
标识
DOI:10.1097/mjt.0b013e3180ed80bf
摘要

Odds ratios (ORs), unlike chi2 tests, provide direct insight into the strength of the relationship between treatment modalities and treatment effects. Multiple regression models can reduce the data spread due to certain patient characteristics and thus improve the precision of the treatment comparison. Despite these advantages, the use of these methods in clinical trials is relatively uncommon. Our objectives were (1) to emphasize the great potential of ORs and multiple regression models as a basis of modern methods; (2) to illustrate their ease of use; and (3) to familiarize nonmathematical readers with these important methods. Advantages of ORs are multiple. (1) They describe the probability that people with a certain treatment will have an event, versus those without the treatment, and are therefore a welcome alternative to the widely used chi2 tests for analyzing binary data in clinical trials. (2) statistical software of ORs is widely available. (3) Computations using risk ratios (RRs) are less sensitive than those using ORs. (4) ORs are the basis for modern methods such as meta-analyses, propensity scores, logistic regression, and Cox regression. For analysis, logarithms of the ORs have to be used; results are obtained by calculating antilogarithms. A limitation of the ORs is that they present relative benefits but not absolute benefits. ORs, despite a fairly complex mathematical background, are easy to use, even for nonmathematicians. Both linear and logistic regression models can be adequately applied for the purpose of improving precision of parameter estimates such as treatment effects. We caution that, although application of these models is very easy with computer programs widely available, the fit of the regression models should always be carefully checked, and the covariate selection should be carefully considered and sparse. We do hope that this article will stimulate clinical investigators to use ORs and multiple regression models more often.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助流浪小诗人采纳,获得10
刚刚
zczczc完成签到,获得积分10
1秒前
Jello发布了新的文献求助10
1秒前
酷波er应助高贵火儿采纳,获得10
1秒前
2秒前
2秒前
俏皮芷蕊完成签到,获得积分10
2秒前
轻松大王发布了新的文献求助30
2秒前
tianzl7完成签到,获得积分10
2秒前
qingzx完成签到 ,获得积分10
3秒前
pp完成签到,获得积分10
3秒前
3秒前
hismeng发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
4秒前
xxfsx应助负责彤采纳,获得10
4秒前
4秒前
鹿夏寒发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
楼亦玉发布了新的文献求助10
5秒前
科研通AI6应助糊涂的剑采纳,获得10
5秒前
着急的棉花糖完成签到,获得积分10
5秒前
6秒前
lucky发布了新的文献求助10
6秒前
6秒前
7秒前
pp发布了新的文献求助10
7秒前
7秒前
飞扑大王完成签到,获得积分10
7秒前
7秒前
贝儿发布了新的文献求助10
8秒前
zxy发布了新的文献求助10
8秒前
zse发布了新的文献求助10
8秒前
8秒前
8秒前
Jimmy发布了新的文献求助10
8秒前
舒心平蝶完成签到,获得积分20
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506531
求助须知:如何正确求助?哪些是违规求助? 4602075
关于积分的说明 14479755
捐赠科研通 4535954
什么是DOI,文献DOI怎么找? 2485767
邀请新用户注册赠送积分活动 1468544
关于科研通互助平台的介绍 1441056