Clinical Trials: Odds Ratios and Multiple Regression Models-Why and How to Assess Them

医学 逻辑回归 优势比 置信区间 统计 回归分析 回归 临床试验 可能性 内科学 数学
作者
Mohamad Sobh,Ton J. Cleophas,Amel Hadj-Chaib,Aeilko H. Zwinderman
出处
期刊:American Journal of Therapeutics [Lippincott Williams & Wilkins]
卷期号:15 (1): 44-52 被引量:5
标识
DOI:10.1097/mjt.0b013e3180ed80bf
摘要

Odds ratios (ORs), unlike chi2 tests, provide direct insight into the strength of the relationship between treatment modalities and treatment effects. Multiple regression models can reduce the data spread due to certain patient characteristics and thus improve the precision of the treatment comparison. Despite these advantages, the use of these methods in clinical trials is relatively uncommon. Our objectives were (1) to emphasize the great potential of ORs and multiple regression models as a basis of modern methods; (2) to illustrate their ease of use; and (3) to familiarize nonmathematical readers with these important methods. Advantages of ORs are multiple. (1) They describe the probability that people with a certain treatment will have an event, versus those without the treatment, and are therefore a welcome alternative to the widely used chi2 tests for analyzing binary data in clinical trials. (2) statistical software of ORs is widely available. (3) Computations using risk ratios (RRs) are less sensitive than those using ORs. (4) ORs are the basis for modern methods such as meta-analyses, propensity scores, logistic regression, and Cox regression. For analysis, logarithms of the ORs have to be used; results are obtained by calculating antilogarithms. A limitation of the ORs is that they present relative benefits but not absolute benefits. ORs, despite a fairly complex mathematical background, are easy to use, even for nonmathematicians. Both linear and logistic regression models can be adequately applied for the purpose of improving precision of parameter estimates such as treatment effects. We caution that, although application of these models is very easy with computer programs widely available, the fit of the regression models should always be carefully checked, and the covariate selection should be carefully considered and sparse. We do hope that this article will stimulate clinical investigators to use ORs and multiple regression models more often.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
管小有理关注了科研通微信公众号
刚刚
暖冬22发布了新的文献求助10
刚刚
刚刚
思源应助豆包采纳,获得10
1秒前
YSY关闭了YSY文献求助
1秒前
量子星尘发布了新的文献求助10
1秒前
qq发布了新的文献求助10
1秒前
1234发布了新的文献求助10
2秒前
ding应助wuliweiwei采纳,获得10
2秒前
HeT发布了新的文献求助10
2秒前
3秒前
3秒前
ryg发布了新的文献求助30
4秒前
4秒前
xin发布了新的文献求助10
5秒前
李有峰完成签到,获得积分10
5秒前
Joshua发布了新的文献求助10
5秒前
科研顺利发布了新的文献求助10
5秒前
6秒前
6秒前
无幻完成签到 ,获得积分10
6秒前
6秒前
178180完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
zz发布了新的文献求助10
12秒前
如你所liao完成签到,获得积分10
12秒前
12秒前
快乐听露发布了新的文献求助10
14秒前
在水一方应助Gyr060307采纳,获得10
15秒前
懒熊发布了新的文献求助10
15秒前
mwm621发布了新的文献求助10
15秒前
178180发布了新的文献求助10
16秒前
scilai完成签到 ,获得积分10
16秒前
16秒前
lit完成签到 ,获得积分10
16秒前
yuliuism应助小小果妈采纳,获得20
16秒前
李冲云完成签到,获得积分10
17秒前
无名发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770841
求助须知:如何正确求助?哪些是违规求助? 5587884
关于积分的说明 15425568
捐赠科研通 4904243
什么是DOI,文献DOI怎么找? 2638612
邀请新用户注册赠送积分活动 1586491
关于科研通互助平台的介绍 1541597