数学
特征向量
叠加原理
非线性系统
Korteweg–de Vries方程
操作员(生物学)
猜想
数学分析
系列(地层学)
Kruskal算法
数学物理
纯数学
物理
量子力学
离散数学
生成树
转录因子
生物
基因
古生物学
抑制因子
生物化学
化学
标识
DOI:10.1002/cpa.3160210503
摘要
Abstract In Section 1 we present a general principle for associating nonlinear equations evolutions with linear operators so that the eigenvalues of the linear operator integrals of the nonlinear equation. A striking instance of such a procedure discovery by Gardner, Miura and Kruskal that the eigenvalues of the Schrödinger operator are integrals of the Korteweg‐de Vries equation. In Section 2 we prove the simplest case of a conjecture of Kruskal and Zabusky concerning the existence of double wave solutions of the Korteweg‐de Vries equation, i.e., of solutions which for |I| large behave as the superposition of two solitary waves travelling at different speeds. The main tool used is the first of remarkable series of integrals discovered by Kruskal and Zabusky.
科研通智能强力驱动
Strongly Powered by AbleSci AI