清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Optimal Search Filters for Renal Information in EMBASE

医学 梅德林 重症监护医学 泌尿科 政治学 法学
作者
Arthur V. Iansavichus,R. Brian Haynes,Salimah Z. Shariff,Matthew A. Weir,Nancy L Wilczynski,Ann McKibbon,Faisal Rehman,Amit X. Garg
出处
期刊:American Journal of Kidney Diseases [Elsevier]
卷期号:56 (1): 14-22 被引量:12
标识
DOI:10.1053/j.ajkd.2009.11.026
摘要

Background EMBASE is a popular database used to retrieve biomedical information. Our objective was to develop and test search filters to help clinicians and researchers efficiently retrieve articles with renal information in EMBASE. Study Design We used a diagnostic test assessment framework because filters operate similarly to screening tests. Settings & Participants We divided a sample of 5,302 articles from 39 journals into development and validation sets of articles. Index Test Information retrieval properties were assessed by treating each search filter as a “diagnostic test” or screening procedure for the detection of relevant articles. We tested the performance of 1,936,799 search filters made of unique renal terms and their combinations. Reference Standard & Outcome The reference standard was manual review of each article. We calculated the sensitivity and specificity of each filter to identify articles with renal information. Results The best renal filters consisted of multiple search terms, such as “renal replacement therapy,” “renal,” “kidney disease,” and “proteinuria,” and the truncated terms “kidney,” “dialy,” “neph,” “glomerul,” and “hemodial.” These filters achieved peak sensitivities of 98.7% (95% CI, 97.9-99.6) and specificities of 98.5% (95% CI, 98.0-99.0). The retrieval performance of these filters remained excellent in the validation set of independent articles. Limitations The retrieval performance of any search will vary depending on the quality of all search concepts used, not just renal terms. Conclusions We empirically developed and validated high-performance renal search filters for EMBASE. These filters can be programmed into the search engine or used on their own to improve the efficiency of searching. EMBASE is a popular database used to retrieve biomedical information. Our objective was to develop and test search filters to help clinicians and researchers efficiently retrieve articles with renal information in EMBASE. We used a diagnostic test assessment framework because filters operate similarly to screening tests. We divided a sample of 5,302 articles from 39 journals into development and validation sets of articles. Information retrieval properties were assessed by treating each search filter as a “diagnostic test” or screening procedure for the detection of relevant articles. We tested the performance of 1,936,799 search filters made of unique renal terms and their combinations. The reference standard was manual review of each article. We calculated the sensitivity and specificity of each filter to identify articles with renal information. The best renal filters consisted of multiple search terms, such as “renal replacement therapy,” “renal,” “kidney disease,” and “proteinuria,” and the truncated terms “kidney,” “dialy,” “neph,” “glomerul,” and “hemodial.” These filters achieved peak sensitivities of 98.7% (95% CI, 97.9-99.6) and specificities of 98.5% (95% CI, 98.0-99.0). The retrieval performance of these filters remained excellent in the validation set of independent articles. The retrieval performance of any search will vary depending on the quality of all search concepts used, not just renal terms. We empirically developed and validated high-performance renal search filters for EMBASE. These filters can be programmed into the search engine or used on their own to improve the efficiency of searching.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助白玉元宵采纳,获得10
19秒前
chao Liu完成签到 ,获得积分0
23秒前
laohei94_6完成签到 ,获得积分10
28秒前
沉沉完成签到 ,获得积分0
36秒前
压缩完成签到 ,获得积分10
37秒前
37秒前
白玉元宵完成签到,获得积分10
1分钟前
如意2023完成签到 ,获得积分10
1分钟前
无辜的行云完成签到 ,获得积分0
1分钟前
zcbb完成签到,获得积分10
1分钟前
1分钟前
李爱国应助savagecas采纳,获得10
1分钟前
白玉元宵发布了新的文献求助10
1分钟前
科研通AI2S应助oleskarabach采纳,获得10
1分钟前
chengmin完成签到 ,获得积分10
1分钟前
1分钟前
故意的怜晴完成签到 ,获得积分10
1分钟前
savagecas发布了新的文献求助10
1分钟前
xuan完成签到,获得积分10
1分钟前
LZQ发布了新的文献求助10
1分钟前
落后冬云完成签到 ,获得积分10
1分钟前
savagecas完成签到,获得积分10
2分钟前
master-f完成签到 ,获得积分10
2分钟前
zenabia完成签到 ,获得积分10
2分钟前
端庄半凡完成签到 ,获得积分10
2分钟前
星星发布了新的文献求助10
2分钟前
dreamode应助白华苍松采纳,获得10
2分钟前
心静自然好完成签到 ,获得积分10
2分钟前
呆呆完成签到,获得积分10
2分钟前
传奇3应助星星采纳,获得10
2分钟前
WWW完成签到,获得积分10
2分钟前
2分钟前
小徐发布了新的文献求助10
3分钟前
大雄的梦想是什么完成签到 ,获得积分10
3分钟前
huanghe完成签到,获得积分10
3分钟前
你好完成签到 ,获得积分0
3分钟前
小徐完成签到,获得积分20
3分钟前
WWW发布了新的文献求助10
3分钟前
GGBond完成签到 ,获得积分10
3分钟前
Antonio完成签到 ,获得积分10
3分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3539098
求助须知:如何正确求助?哪些是违规求助? 3116670
关于积分的说明 9326538
捐赠科研通 2814659
什么是DOI,文献DOI怎么找? 1547002
邀请新用户注册赠送积分活动 720710
科研通“疑难数据库(出版商)”最低求助积分说明 712192