清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Optimal Search Filters for Renal Information in EMBASE

医学 梅德林 重症监护医学 泌尿科 政治学 法学
作者
Arthur V. Iansavichus,R. Brian Haynes,Salimah Z. Shariff,Matthew A. Weir,Nancy L Wilczynski,Ann McKibbon,Faisal Rehman,Amit X. Garg
出处
期刊:American Journal of Kidney Diseases [Elsevier BV]
卷期号:56 (1): 14-22 被引量:12
标识
DOI:10.1053/j.ajkd.2009.11.026
摘要

Background EMBASE is a popular database used to retrieve biomedical information. Our objective was to develop and test search filters to help clinicians and researchers efficiently retrieve articles with renal information in EMBASE. Study Design We used a diagnostic test assessment framework because filters operate similarly to screening tests. Settings & Participants We divided a sample of 5,302 articles from 39 journals into development and validation sets of articles. Index Test Information retrieval properties were assessed by treating each search filter as a “diagnostic test” or screening procedure for the detection of relevant articles. We tested the performance of 1,936,799 search filters made of unique renal terms and their combinations. Reference Standard & Outcome The reference standard was manual review of each article. We calculated the sensitivity and specificity of each filter to identify articles with renal information. Results The best renal filters consisted of multiple search terms, such as “renal replacement therapy,” “renal,” “kidney disease,” and “proteinuria,” and the truncated terms “kidney,” “dialy,” “neph,” “glomerul,” and “hemodial.” These filters achieved peak sensitivities of 98.7% (95% CI, 97.9-99.6) and specificities of 98.5% (95% CI, 98.0-99.0). The retrieval performance of these filters remained excellent in the validation set of independent articles. Limitations The retrieval performance of any search will vary depending on the quality of all search concepts used, not just renal terms. Conclusions We empirically developed and validated high-performance renal search filters for EMBASE. These filters can be programmed into the search engine or used on their own to improve the efficiency of searching. EMBASE is a popular database used to retrieve biomedical information. Our objective was to develop and test search filters to help clinicians and researchers efficiently retrieve articles with renal information in EMBASE. We used a diagnostic test assessment framework because filters operate similarly to screening tests. We divided a sample of 5,302 articles from 39 journals into development and validation sets of articles. Information retrieval properties were assessed by treating each search filter as a “diagnostic test” or screening procedure for the detection of relevant articles. We tested the performance of 1,936,799 search filters made of unique renal terms and their combinations. The reference standard was manual review of each article. We calculated the sensitivity and specificity of each filter to identify articles with renal information. The best renal filters consisted of multiple search terms, such as “renal replacement therapy,” “renal,” “kidney disease,” and “proteinuria,” and the truncated terms “kidney,” “dialy,” “neph,” “glomerul,” and “hemodial.” These filters achieved peak sensitivities of 98.7% (95% CI, 97.9-99.6) and specificities of 98.5% (95% CI, 98.0-99.0). The retrieval performance of these filters remained excellent in the validation set of independent articles. The retrieval performance of any search will vary depending on the quality of all search concepts used, not just renal terms. We empirically developed and validated high-performance renal search filters for EMBASE. These filters can be programmed into the search engine or used on their own to improve the efficiency of searching.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
等待夏旋发布了新的文献求助10
8秒前
老迟到的友桃完成签到 ,获得积分10
16秒前
小瓢虫完成签到 ,获得积分10
26秒前
rover完成签到,获得积分10
28秒前
coolplex完成签到 ,获得积分10
38秒前
清脆的靖仇完成签到,获得积分10
47秒前
ding应助雪山飞龙采纳,获得10
49秒前
zhuosht完成签到 ,获得积分10
50秒前
1分钟前
文献求助完成签到,获得积分10
1分钟前
宇文雨文完成签到 ,获得积分10
1分钟前
CipherSage应助淳于惜雪采纳,获得10
1分钟前
1分钟前
寂寞圣贤完成签到,获得积分10
1分钟前
失眠思远发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
雪山飞龙发布了新的文献求助10
1分钟前
steven发布了新的文献求助10
1分钟前
2分钟前
田様应助车耷采纳,获得10
2分钟前
我服有点黑完成签到,获得积分10
2分钟前
2分钟前
Freddy完成签到 ,获得积分10
2分钟前
车耷发布了新的文献求助10
2分钟前
车耷完成签到,获得积分20
3分钟前
摘星012完成签到 ,获得积分10
3分钟前
幽默滑板完成签到 ,获得积分10
3分钟前
情怀应助AliEmbark采纳,获得10
3分钟前
英喆完成签到 ,获得积分10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
房天川完成签到 ,获得积分10
3分钟前
丘比特应助AliEmbark采纳,获得10
4分钟前
红毛兔完成签到 ,获得积分10
4分钟前
研友_VZG7GZ应助AliEmbark采纳,获得10
4分钟前
十七完成签到 ,获得积分10
4分钟前
瀚海的雄狮完成签到,获得积分10
4分钟前
温柔的柠檬完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4935628
求助须知:如何正确求助?哪些是违规求助? 4202915
关于积分的说明 13059095
捐赠科研通 3979341
什么是DOI,文献DOI怎么找? 2179701
邀请新用户注册赠送积分活动 1195702
关于科研通互助平台的介绍 1107514