清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Optimal Search Filters for Renal Information in EMBASE

医学 梅德林 重症监护医学 泌尿科 政治学 法学
作者
Arthur V. Iansavichus,R. Brian Haynes,Salimah Z. Shariff,Matthew A. Weir,Nancy L Wilczynski,Ann McKibbon,Faisal Rehman,Amit X. Garg
出处
期刊:American Journal of Kidney Diseases [Elsevier]
卷期号:56 (1): 14-22 被引量:12
标识
DOI:10.1053/j.ajkd.2009.11.026
摘要

Background EMBASE is a popular database used to retrieve biomedical information. Our objective was to develop and test search filters to help clinicians and researchers efficiently retrieve articles with renal information in EMBASE. Study Design We used a diagnostic test assessment framework because filters operate similarly to screening tests. Settings & Participants We divided a sample of 5,302 articles from 39 journals into development and validation sets of articles. Index Test Information retrieval properties were assessed by treating each search filter as a “diagnostic test” or screening procedure for the detection of relevant articles. We tested the performance of 1,936,799 search filters made of unique renal terms and their combinations. Reference Standard & Outcome The reference standard was manual review of each article. We calculated the sensitivity and specificity of each filter to identify articles with renal information. Results The best renal filters consisted of multiple search terms, such as “renal replacement therapy,” “renal,” “kidney disease,” and “proteinuria,” and the truncated terms “kidney,” “dialy,” “neph,” “glomerul,” and “hemodial.” These filters achieved peak sensitivities of 98.7% (95% CI, 97.9-99.6) and specificities of 98.5% (95% CI, 98.0-99.0). The retrieval performance of these filters remained excellent in the validation set of independent articles. Limitations The retrieval performance of any search will vary depending on the quality of all search concepts used, not just renal terms. Conclusions We empirically developed and validated high-performance renal search filters for EMBASE. These filters can be programmed into the search engine or used on their own to improve the efficiency of searching. EMBASE is a popular database used to retrieve biomedical information. Our objective was to develop and test search filters to help clinicians and researchers efficiently retrieve articles with renal information in EMBASE. We used a diagnostic test assessment framework because filters operate similarly to screening tests. We divided a sample of 5,302 articles from 39 journals into development and validation sets of articles. Information retrieval properties were assessed by treating each search filter as a “diagnostic test” or screening procedure for the detection of relevant articles. We tested the performance of 1,936,799 search filters made of unique renal terms and their combinations. The reference standard was manual review of each article. We calculated the sensitivity and specificity of each filter to identify articles with renal information. The best renal filters consisted of multiple search terms, such as “renal replacement therapy,” “renal,” “kidney disease,” and “proteinuria,” and the truncated terms “kidney,” “dialy,” “neph,” “glomerul,” and “hemodial.” These filters achieved peak sensitivities of 98.7% (95% CI, 97.9-99.6) and specificities of 98.5% (95% CI, 98.0-99.0). The retrieval performance of these filters remained excellent in the validation set of independent articles. The retrieval performance of any search will vary depending on the quality of all search concepts used, not just renal terms. We empirically developed and validated high-performance renal search filters for EMBASE. These filters can be programmed into the search engine or used on their own to improve the efficiency of searching.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Balance Man完成签到 ,获得积分0
刚刚
bing完成签到,获得积分10
41秒前
bing发布了新的文献求助10
50秒前
nick完成签到,获得积分10
58秒前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
Omni完成签到 ,获得积分10
1分钟前
披着羊皮的狼完成签到 ,获得积分10
1分钟前
sunialnd完成签到,获得积分10
2分钟前
2分钟前
didididm发布了新的文献求助10
2分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
HHM完成签到,获得积分10
3分钟前
tianshanfeihe完成签到 ,获得积分10
3分钟前
didididm完成签到,获得积分10
3分钟前
所所应助npknpk采纳,获得10
3分钟前
吴静完成签到 ,获得积分10
3分钟前
王贤平完成签到,获得积分10
3分钟前
笔墨纸砚完成签到 ,获得积分10
4分钟前
111完成签到 ,获得积分10
4分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
抚琴祛魅完成签到 ,获得积分10
5分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
虞无声完成签到,获得积分10
5分钟前
shhoing应助科研通管家采纳,获得10
7分钟前
8分钟前
Becky完成签到 ,获得积分10
8分钟前
jfc完成签到 ,获得积分10
9分钟前
shhoing应助科研通管家采纳,获得10
9分钟前
CJY完成签到 ,获得积分10
9分钟前
Sunny完成签到,获得积分10
9分钟前
lululu完成签到 ,获得积分10
9分钟前
arsenal完成签到 ,获得积分10
10分钟前
科研通AI2S应助科研通管家采纳,获得10
11分钟前
shhoing应助科研通管家采纳,获得10
13分钟前
科研通AI2S应助科研通管家采纳,获得10
13分钟前
Ava应助科研通管家采纳,获得10
13分钟前
shhoing应助科研通管家采纳,获得10
13分钟前
科研通AI2S应助科研通管家采纳,获得10
13分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561600
求助须知:如何正确求助?哪些是违规求助? 4646663
关于积分的说明 14678795
捐赠科研通 4588007
什么是DOI,文献DOI怎么找? 2517273
邀请新用户注册赠送积分活动 1490557
关于科研通互助平台的介绍 1461590