Finding the bias and prestige of nodes in networks based on trust scores

声望 计算机科学 节点(物理) GSM演进的增强数据速率 图形 有界函数 对手 理论计算机科学 可信赖性 数学 计算机安全 人工智能 语言学 结构工程 工程类 数学分析 哲学
作者
Abhinav Mishra,Arnab Bhattacharya
标识
DOI:10.1145/1963405.1963485
摘要

Many real-life graphs such as social networks and peer-to-peer networks capture the relationships among the nodes by using trust scores to label the edges. Important usage of such networks includes trust prediction, finding the most reliable or trusted node in a local subgraph, etc. For many of these applications, it is crucial to assess the prestige and bias of a node. The bias of a node denotes its propensity to trust/mistrust its neighbours and is closely related to truthfulness. If a node trusts all its neighbours, its recommendation of another node as trustworthy is less reliable. It is based on the idea that the recommendation of a highly biased node should weigh less. In this paper, we propose an algorithm to compute the bias and prestige of nodes in networks where the edge weight denotes the trust score. Unlike most other graph-based algorithms, our method works even when the edge weights are not necessarily positive. The algorithm is iterative and runs in O(km) time where k is the number of iterations and m is the total number of edges in the network. The algorithm exhibits several other desirable properties. It converges to a unique value very quickly. Also, the error in bias and prestige values at any particular iteration is bounded. Further, experiments show that our model conforms well to social theories such as the balance theory (enemy of a friend is an enemy, etc.).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
kxdxng完成签到 ,获得积分10
3秒前
Xiaoxiao应助VitoLi采纳,获得10
3秒前
沫沫发布了新的文献求助20
4秒前
wyy发布了新的文献求助10
4秒前
树精发布了新的文献求助10
6秒前
九天发布了新的文献求助10
6秒前
chunminli发布了新的文献求助10
7秒前
Akim应助wyy采纳,获得10
9秒前
汉堡包应助LY采纳,获得10
10秒前
Xiaoxiao应助风清扬采纳,获得10
10秒前
李健应助Felix采纳,获得10
11秒前
李健应助乐事薯片噢采纳,获得10
13秒前
shufessm完成签到,获得积分0
13秒前
jeeya完成签到,获得积分10
14秒前
15秒前
16秒前
17秒前
17秒前
18秒前
抹茶泡泡完成签到 ,获得积分10
18秒前
田様应助222采纳,获得10
19秒前
20秒前
科研通AI2S应助灵巧大地采纳,获得10
21秒前
21秒前
21秒前
LY发布了新的文献求助10
22秒前
乐事薯片噢完成签到,获得积分10
23秒前
23秒前
野猪发布了新的文献求助10
23秒前
高贵紫丝发布了新的文献求助10
23秒前
张曰淼完成签到,获得积分10
24秒前
猪皮恶人完成签到,获得积分10
24秒前
25秒前
搜集达人应助高兴山兰采纳,获得10
25秒前
weixiaosi发布了新的文献求助10
25秒前
猪皮恶人发布了新的文献求助10
26秒前
shinn发布了新的文献求助10
26秒前
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967544
求助须知:如何正确求助?哪些是违规求助? 3512763
关于积分的说明 11165008
捐赠科研通 3247759
什么是DOI,文献DOI怎么找? 1794027
邀请新用户注册赠送积分活动 874808
科研通“疑难数据库(出版商)”最低求助积分说明 804528