Finding the bias and prestige of nodes in networks based on trust scores

声望 计算机科学 节点(物理) GSM演进的增强数据速率 图形 有界函数 对手 理论计算机科学 可信赖性 数学 计算机安全 人工智能 哲学 语言学 数学分析 结构工程 工程类
作者
Abhinav Mishra,Arnab Bhattacharya
标识
DOI:10.1145/1963405.1963485
摘要

Many real-life graphs such as social networks and peer-to-peer networks capture the relationships among the nodes by using trust scores to label the edges. Important usage of such networks includes trust prediction, finding the most reliable or trusted node in a local subgraph, etc. For many of these applications, it is crucial to assess the prestige and bias of a node. The bias of a node denotes its propensity to trust/mistrust its neighbours and is closely related to truthfulness. If a node trusts all its neighbours, its recommendation of another node as trustworthy is less reliable. It is based on the idea that the recommendation of a highly biased node should weigh less. In this paper, we propose an algorithm to compute the bias and prestige of nodes in networks where the edge weight denotes the trust score. Unlike most other graph-based algorithms, our method works even when the edge weights are not necessarily positive. The algorithm is iterative and runs in O(km) time where k is the number of iterations and m is the total number of edges in the network. The algorithm exhibits several other desirable properties. It converges to a unique value very quickly. Also, the error in bias and prestige values at any particular iteration is bounded. Further, experiments show that our model conforms well to social theories such as the balance theory (enemy of a friend is an enemy, etc.).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潜山耕之完成签到,获得积分10
刚刚
李佳倩发布了新的文献求助10
1秒前
科研民工完成签到,获得积分10
1秒前
去去去去发布了新的文献求助10
2秒前
2秒前
2秒前
搜集达人应助追寻的城采纳,获得10
2秒前
hao完成签到,获得积分10
3秒前
Pc发布了新的文献求助10
3秒前
tt发布了新的文献求助10
3秒前
li发布了新的文献求助10
4秒前
科研通AI2S应助Sicily采纳,获得10
4秒前
5秒前
5秒前
李益强发布了新的文献求助10
6秒前
waq完成签到,获得积分10
6秒前
8秒前
陈龙艳发布了新的文献求助10
8秒前
海森堡完成签到,获得积分10
9秒前
10秒前
852应助zhangnan采纳,获得10
12秒前
DAWN完成签到 ,获得积分10
13秒前
烟花应助JUGG采纳,获得10
14秒前
呆鸥发布了新的文献求助30
15秒前
一研一个不吱声完成签到,获得积分10
16秒前
16秒前
小马甲应助粗暴的冰露采纳,获得10
16秒前
乐乐应助楠木南采纳,获得10
17秒前
01259发布了新的文献求助10
17秒前
17秒前
kento应助求助采纳,获得50
18秒前
18秒前
18秒前
19秒前
自觉枫完成签到,获得积分20
19秒前
19秒前
19秒前
hhhhhhan616发布了新的文献求助10
21秒前
21秒前
零一发布了新的文献求助10
21秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138178
求助须知:如何正确求助?哪些是违规求助? 2789056
关于积分的说明 7790034
捐赠科研通 2445505
什么是DOI,文献DOI怎么找? 1300440
科研通“疑难数据库(出版商)”最低求助积分说明 625925
版权声明 601046