Power and sample size estimation in microarray studies

样本量测定 灵敏度(控制系统) 排列(音乐) 单变量 样品(材料) 统计 统计能力 计算机科学 数学 错误发现率 数据挖掘 生物 基因 多元统计 遗传学 工程类 电子工程 化学 声学 物理 色谱法
作者
Wei‐Jiun Lin,Huey‐Miin Hsueh,James J. Chen
出处
期刊:BMC Bioinformatics [Springer Nature]
卷期号:11 (1) 被引量:65
标识
DOI:10.1186/1471-2105-11-48
摘要

Before conducting a microarray experiment, one important issue that needs to be determined is the number of arrays required in order to have adequate power to identify differentially expressed genes. This paper discusses some crucial issues in the problem formulation, parameter specifications, and approaches that are commonly proposed for sample size estimation in microarray experiments. Common methods for sample size estimation are formulated as the minimum sample size necessary to achieve a specified sensitivity (proportion of detected truly differentially expressed genes) on average at a specified false discovery rate (FDR) level and specified expected proportion (pi1) of the true differentially expression genes in the array. Unfortunately, the probability of detecting the specified sensitivity in such a formulation can be low. We formulate the sample size problem as the number of arrays needed to achieve a specified sensitivity with 95% probability at the specified significance level. A permutation method using a small pilot dataset to estimate sample size is proposed. This method accounts for correlation and effect size heterogeneity among genes.A sample size estimate based on the common formulation, to achieve the desired sensitivity on average, can be calculated using a univariate method without taking the correlation among genes into consideration. This formulation of sample size problem is inadequate because the probability of detecting the specified sensitivity can be lower than 50%. On the other hand, the needed sample size calculated by the proposed permutation method will ensure detecting at least the desired sensitivity with 95% probability. The method is shown to perform well for a real example dataset using a small pilot dataset with 4-6 samples per group.We recommend that the sample size problem should be formulated to detect a specified proportion of differentially expressed genes with 95% probability. This formulation ensures finding the desired proportion of true positives with high probability. The proposed permutation method takes the correlation structure and effect size heterogeneity into consideration and works well using only a small pilot dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zjw发布了新的文献求助10
3秒前
丘比特应助34采纳,获得10
4秒前
Hello应助月不笑采纳,获得10
5秒前
SciGPT应助刘家翔采纳,获得10
6秒前
小屋完成签到,获得积分10
8秒前
14秒前
xgx984完成签到,获得积分10
14秒前
来日可期完成签到,获得积分10
15秒前
月不笑发布了新的文献求助10
19秒前
zeyin完成签到,获得积分10
19秒前
科研通AI2S应助林波er采纳,获得10
20秒前
舒伯特完成签到 ,获得积分10
20秒前
22秒前
生动映容完成签到 ,获得积分10
23秒前
喜悦的虔发布了新的文献求助10
27秒前
Moonber完成签到,获得积分10
27秒前
不爱吃韭菜发布了新的文献求助200
27秒前
洁洁3323发布了新的文献求助10
29秒前
32秒前
35秒前
思源应助喜悦的虔采纳,获得10
35秒前
37秒前
uwasa发布了新的文献求助10
41秒前
思源应助月不笑采纳,获得10
42秒前
含糊的尔槐应助yao采纳,获得200
43秒前
stars发布了新的文献求助10
43秒前
justsayit完成签到 ,获得积分10
46秒前
FlightAttendant完成签到 ,获得积分10
48秒前
49秒前
52秒前
53秒前
学术小天才完成签到 ,获得积分10
55秒前
55秒前
cicy发布了新的文献求助10
56秒前
aabbc完成签到,获得积分10
56秒前
霸气的依秋应助moon采纳,获得30
58秒前
月不笑发布了新的文献求助10
59秒前
59秒前
林波er发布了新的文献求助10
59秒前
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
中国荞麦品种志 1000
BIOLOGY OF NON-CHORDATES 1000
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Discourse, Identities and Genres in Corporate Communication 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3359603
求助须知:如何正确求助?哪些是违规求助? 2982349
关于积分的说明 8703179
捐赠科研通 2664017
什么是DOI,文献DOI怎么找? 1458777
科研通“疑难数据库(出版商)”最低求助积分说明 675241
邀请新用户注册赠送积分活动 666331