Algorithms for Hyper-Parameter Optimization

计算机科学 人工神经网络 人工智能 机器学习 深度学习 特征(语言学) 算法 随机搜索 哲学 语言学
作者
James Bergstra,R. Bardenet,Yoshua Bengio,Balázs Kégl
出处
期刊:Le Centre pour la Communication Scientifique Directe - HAL - Diderot 被引量:3236
摘要

Several recent advances to the state of the art in image classification benchmarks have come from better configurations of existing techniques rather than novel approaches to feature learning. Traditionally, hyper-parameter optimization has been the job of humans because they can be very efficient in regimes where only a few trials are possible. Presently, computer clusters and GPU processors make it possible to run more trials and we show that algorithmic approaches can find better results. We present hyper-parameter optimization results on tasks of training neural networks and deep belief networks (DBNs). We optimize hyper-parameters using random search and two new greedy sequential methods based on the expected improvement criterion. Random search has been shown to be sufficiently efficient for learning neural networks for several datasets, but we show it is unreliable for training DBNs. The sequential algorithms are applied to the most difficult DBN learning problems from [1] and find significantly better results than the best previously reported. This work contributes novel techniques for making response surface models P(y|x) in which many elements of hyper-parameter assignment (x) are known to be irrelevant given particular values of other elements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ttt完成签到,获得积分10
刚刚
情怀应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
Cleo应助科研通管家采纳,获得10
1秒前
1秒前
wlscj应助科研通管家采纳,获得20
1秒前
浮游应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
2秒前
evvj发布了新的文献求助10
2秒前
华仔应助科研通管家采纳,获得30
2秒前
无限的灵阳完成签到 ,获得积分20
2秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得30
2秒前
wanci应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
2秒前
lawang发布了新的文献求助20
2秒前
amberzyc应助科研通管家采纳,获得10
2秒前
3秒前
Lucas应助猪猪hero采纳,获得10
3秒前
友好怜蕾发布了新的文献求助10
4秒前
5秒前
6秒前
6秒前
我是老大应助背后的书文采纳,获得10
6秒前
小杭76应助yuner采纳,获得10
6秒前
7秒前
Lester完成签到 ,获得积分10
8秒前
想发sci发布了新的文献求助10
8秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
SC武完成签到,获得积分10
11秒前
17完成签到 ,获得积分10
12秒前
汉堡包应助lilyz615采纳,获得10
12秒前
猪猪hero发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5414857
求助须知:如何正确求助?哪些是违规求助? 4531710
关于积分的说明 14129736
捐赠科研通 4447140
什么是DOI,文献DOI怎么找? 2439607
邀请新用户注册赠送积分活动 1431701
关于科研通互助平台的介绍 1409315