Algorithms for hyper-parameter optimization

计算机科学 人工神经网络 人工智能 机器学习 深度学习 特征(语言学) 算法 随机搜索 语言学 哲学
作者
James Bergstra,R. Bardenet,Yoshua Bengio,Balázs Kégl
出处
期刊:Le Centre pour la Communication Scientifique Directe - HAL - Diderot 被引量:3180
摘要

Several recent advances to the state of the art in image classification benchmarks have come from better configurations of existing techniques rather than novel ap-proaches to feature learning. Traditionally, hyper-parameter optimization has been the job of humans because they can be very efficient in regimes where only a few trials are possible. Presently, computer clusters and GPU processors make it pos-sible to run more trials and we show that algorithmic approaches can find better results. We present hyper-parameter optimization results on tasks of training neu-ral networks and deep belief networks (DBNs). We optimize hyper-parameters using random search and two new greedy sequential methods based on the ex-pected improvement criterion. Random search has been shown to be sufficiently efficient for learning neural networks for several datasets, but we show it is unreli-able for training DBNs. The sequential algorithms are applied to the most difficult DBN learning problems from [1] and find significantly better results than the best previously reported. This work contributes novel techniques for making response surface models P (y|x) in which many elements of hyper-parameter assignment (x) are known to be irrelevant given particular values of other elements. 1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大胆的夏天完成签到,获得积分10
1秒前
F_u发布了新的文献求助30
3秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
朴素尔蝶完成签到,获得积分10
6秒前
woleaisa发布了新的文献求助20
7秒前
真君山山长完成签到,获得积分10
8秒前
8秒前
沉醉的中国钵完成签到 ,获得积分10
9秒前
英俊的铭应助拾柒采纳,获得10
9秒前
9秒前
10秒前
10秒前
shen完成签到,获得积分10
10秒前
cccui发布了新的文献求助10
10秒前
zzn完成签到,获得积分10
11秒前
12秒前
蓝天白云完成签到,获得积分20
13秒前
icewcq完成签到,获得积分10
13秒前
123~!完成签到,获得积分10
14秒前
14秒前
14秒前
科研包发布了新的文献求助10
15秒前
小鱼干完成签到,获得积分10
15秒前
七七发布了新的文献求助10
15秒前
16秒前
18秒前
传奇3应助seedcui采纳,获得10
19秒前
喝水选手发布了新的文献求助10
19秒前
天天快乐应助sss采纳,获得10
20秒前
bkagyin应助AslenK采纳,获得10
20秒前
icewcq发布了新的文献求助10
20秒前
赵保钢发布了新的文献求助10
21秒前
小马甲应助jia采纳,获得10
22秒前
22秒前
科研通AI6应助七七采纳,获得10
23秒前
23秒前
24秒前
Owen应助蘸糖冰美式采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536933
求助须知:如何正确求助?哪些是违规求助? 4624592
关于积分的说明 14592446
捐赠科研通 4565023
什么是DOI,文献DOI怎么找? 2502125
邀请新用户注册赠送积分活动 1480875
关于科研通互助平台的介绍 1452098