ChemDataExtractor: A Toolkit for Automated Extraction of Chemical Information from the Scientific Literature

计算机科学 信息抽取 情报检索 萃取(化学) 数据科学 色谱法 化学
作者
Matthew C. Swain,Jacqueline M. Cole
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:56 (10): 1894-1904 被引量:408
标识
DOI:10.1021/acs.jcim.6b00207
摘要

The emergence of "big data" initiatives has led to the need for tools that can automatically extract valuable chemical information from large volumes of unstructured data, such as the scientific literature. Since chemical information can be present in figures, tables, and textual paragraphs, successful information extraction often depends on the ability to interpret all of these domains simultaneously. We present a complete toolkit for the automated extraction of chemical entities and their associated properties, measurements, and relationships from scientific documents that can be used to populate structured chemical databases. Our system provides an extensible, chemistry-aware, natural language processing pipeline for tokenization, part-of-speech tagging, named entity recognition, and phrase parsing. Within this scope, we report improved performance for chemical named entity recognition through the use of unsupervised word clustering based on a massive corpus of chemistry articles. For phrase parsing and information extraction, we present the novel use of multiple rule-based grammars that are tailored for interpreting specific document domains such as textual paragraphs, captions, and tables. We also describe document-level processing to resolve data interdependencies and show that this is particularly necessary for the autogeneration of chemical databases since captions and tables commonly contain chemical identifiers and references that are defined elsewhere in the text. The performance of the toolkit to correctly extract various types of data was evaluated, affording an F-score of 93.4%, 86.8%, and 91.5% for extracting chemical identifiers, spectroscopic attributes, and chemical property attributes, respectively; set against the CHEMDNER chemical name extraction challenge, ChemDataExtractor yields a competitive F-score of 87.8%. All tools have been released under the MIT license and are available to download from http://www.chemdataextractor.org .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ccciii发布了新的文献求助10
2秒前
2秒前
fffffffq完成签到,获得积分10
3秒前
研友_xLOMQZ发布了新的文献求助30
3秒前
5秒前
啦啦啦完成签到,获得积分10
5秒前
ykgoose发布了新的文献求助10
5秒前
6秒前
调研昵称发布了新的文献求助30
6秒前
俭朴的又菡完成签到,获得积分10
8秒前
wsh发布了新的文献求助10
9秒前
9秒前
9秒前
lallallallall应助科研通管家采纳,获得10
9秒前
Shirley应助科研通管家采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
Shirley应助科研通管家采纳,获得10
10秒前
英姑应助科研通管家采纳,获得10
10秒前
10秒前
CuSO4完成签到,获得积分10
11秒前
11秒前
小二郎应助吴海娇采纳,获得10
11秒前
11秒前
华仔应助ccciii采纳,获得10
12秒前
希望天下0贩的0应助xuhan采纳,获得10
12秒前
鲤鱼小鸽子完成签到,获得积分20
15秒前
moralz发布了新的文献求助10
15秒前
熊二完成签到,获得积分10
15秒前
tenz完成签到,获得积分10
16秒前
缥莲完成签到,获得积分10
16秒前
wsh发布了新的文献求助10
17秒前
8941完成签到 ,获得积分10
18秒前
cyyan完成签到,获得积分10
18秒前
英姑应助唠叨的宝马采纳,获得10
18秒前
witty完成签到,获得积分10
19秒前
森sen完成签到 ,获得积分10
19秒前
20秒前
21秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Heteroatom-Doped Carbon Allotropes: Progress in Synthesis, Characterization, and Applications 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159845
求助须知:如何正确求助?哪些是违规求助? 2810777
关于积分的说明 7889428
捐赠科研通 2469877
什么是DOI,文献DOI怎么找? 1315131
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012