已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA

激光雷达 遥感 高光谱成像 多光谱图像 均方误差 天蓬 植被(病理学) 树冠 环境科学 数字高程模型 地理 数学 医学 统计 病理 考古
作者
Temuulen Tsagaan Sankey,Jonathon J. Donager,Jason McVay,Joel B. Sankey
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:195: 30-43 被引量:360
标识
DOI:10.1016/j.rse.2017.04.007
摘要

Forest vegetation classification and structure measurements are fundamental steps for planning, monitoring, and evaluating large-scale forest changes including restoration treatments. High spatial and spectral resolution remote sensing data are critically needed to classify vegetation and measure their 3-dimensional (3D) canopy structure at the level of individual species. Here we test high-resolution lidar, hyperspectral, and multispectral data collected from unmanned aerial vehicles (UAV) and demonstrate a lidar-hyperspectral image fusion method in treated and control forests with varying tree density and canopy cover as well as in an ecotone environment to represent a gradient of vegetation and topography in northern Arizona, U.S.A. The fusion performs better (88% overall accuracy) than either data type alone, particularly for species with similar spectral signatures, but different canopy sizes. The lidar data provides estimates of individual tree height (R2 = 0.90; RMSE = 2.3 m) and crown diameter (R2 = 0.72; RMSE = 0.71 m) as well as total tree canopy cover (R2 = 0.87; RMSE = 9.5%) and tree density (R2 = 0.77; RMSE = 0.69 trees/cell) in 10 m cells across thin only, burn only, thin-and-burn, and control treatments, where tree cover and density ranged between 22 and 50% and 1–3.5 trees/cell, respectively. The lidar data also produces highly accurate digital elevation model (DEM) (R2 = 0.92; RMSE = 0.75 m). In comparison, 3D data derived from the multispectral data via structure-from-motion produced lower correlations with field-measured variables, especially in dense and structurally complex forests. The lidar, hyperspectral, and multispectral sensors, and the methods demonstrated here can be widely applied across a gradient of vegetation and topography for monitoring landscapes undergoing large-scale changes such as the forests in the southwestern U.S.A.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿槿发布了新的文献求助10
1秒前
3秒前
口外彭于晏完成签到,获得积分10
6秒前
sugarmei完成签到,获得积分10
7秒前
苏诗兰发布了新的文献求助10
9秒前
sugarmei发布了新的文献求助10
11秒前
AZQ完成签到,获得积分10
13秒前
小象完成签到,获得积分10
13秒前
123完成签到,获得积分20
14秒前
佳佳应助阿槿采纳,获得10
16秒前
Bighen完成签到 ,获得积分0
16秒前
17秒前
苏诗兰完成签到,获得积分10
21秒前
123123完成签到 ,获得积分10
23秒前
阿槿完成签到,获得积分20
23秒前
科研通AI2S应助sugarmei采纳,获得10
26秒前
谦让的西装完成签到 ,获得积分10
27秒前
一定accept完成签到 ,获得积分10
28秒前
斜玉发布了新的文献求助10
29秒前
123完成签到 ,获得积分10
31秒前
33秒前
少夫人完成签到,获得积分10
34秒前
万事屋完成签到 ,获得积分10
34秒前
34秒前
36秒前
周而复始@发布了新的文献求助10
38秒前
米糖安发布了新的文献求助80
39秒前
小巧念露发布了新的文献求助80
40秒前
Kelevator发布了新的文献求助10
42秒前
wing完成签到 ,获得积分10
42秒前
爱撒娇的妙竹完成签到,获得积分10
43秒前
米糖安完成签到,获得积分10
45秒前
万能图书馆应助白开水采纳,获得10
45秒前
leslie完成签到 ,获得积分0
47秒前
47秒前
隐形曼青应助斜玉采纳,获得10
47秒前
49秒前
我爱物理发布了新的文献求助10
53秒前
萧萧发布了新的文献求助10
56秒前
58秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968181
求助须知:如何正确求助?哪些是违规求助? 3513192
关于积分的说明 11166765
捐赠科研通 3248426
什么是DOI,文献DOI怎么找? 1794246
邀请新用户注册赠送积分活动 874950
科研通“疑难数据库(出版商)”最低求助积分说明 804629