UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA

激光雷达 遥感 高光谱成像 多光谱图像 均方误差 天蓬 植被(病理学) 树冠 环境科学 数字高程模型 地理 数学 医学 统计 病理 考古
作者
Temuulen Tsagaan Sankey,Jonathon J. Donager,Jason McVay,Joel B. Sankey
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:195: 30-43 被引量:360
标识
DOI:10.1016/j.rse.2017.04.007
摘要

Forest vegetation classification and structure measurements are fundamental steps for planning, monitoring, and evaluating large-scale forest changes including restoration treatments. High spatial and spectral resolution remote sensing data are critically needed to classify vegetation and measure their 3-dimensional (3D) canopy structure at the level of individual species. Here we test high-resolution lidar, hyperspectral, and multispectral data collected from unmanned aerial vehicles (UAV) and demonstrate a lidar-hyperspectral image fusion method in treated and control forests with varying tree density and canopy cover as well as in an ecotone environment to represent a gradient of vegetation and topography in northern Arizona, U.S.A. The fusion performs better (88% overall accuracy) than either data type alone, particularly for species with similar spectral signatures, but different canopy sizes. The lidar data provides estimates of individual tree height (R2 = 0.90; RMSE = 2.3 m) and crown diameter (R2 = 0.72; RMSE = 0.71 m) as well as total tree canopy cover (R2 = 0.87; RMSE = 9.5%) and tree density (R2 = 0.77; RMSE = 0.69 trees/cell) in 10 m cells across thin only, burn only, thin-and-burn, and control treatments, where tree cover and density ranged between 22 and 50% and 1–3.5 trees/cell, respectively. The lidar data also produces highly accurate digital elevation model (DEM) (R2 = 0.92; RMSE = 0.75 m). In comparison, 3D data derived from the multispectral data via structure-from-motion produced lower correlations with field-measured variables, especially in dense and structurally complex forests. The lidar, hyperspectral, and multispectral sensors, and the methods demonstrated here can be widely applied across a gradient of vegetation and topography for monitoring landscapes undergoing large-scale changes such as the forests in the southwestern U.S.A.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
所所应助Irene采纳,获得10
刚刚
wuwu完成签到,获得积分10
2秒前
雾醉舟完成签到,获得积分10
2秒前
花生糕完成签到,获得积分10
3秒前
小白鸽完成签到,获得积分10
3秒前
机灵纸鹤完成签到 ,获得积分10
3秒前
lake完成签到,获得积分10
3秒前
Hello应助受伤的安雁采纳,获得30
3秒前
Evan123完成签到,获得积分10
4秒前
闫什应助Flz采纳,获得10
4秒前
4秒前
xiaorui完成签到,获得积分10
4秒前
尊敬的寄松完成签到 ,获得积分10
6秒前
7秒前
云深不知处完成签到,获得积分10
7秒前
老迟到的小松鼠完成签到,获得积分10
8秒前
勤恳镜子完成签到,获得积分10
9秒前
开心的若烟完成签到,获得积分10
10秒前
爱上多hi完成签到,获得积分10
10秒前
ll发布了新的文献求助10
13秒前
13秒前
笨笨梦寒关注了科研通微信公众号
13秒前
MM完成签到,获得积分10
14秒前
煲煲煲仔饭完成签到 ,获得积分10
14秒前
煲煲煲仔饭完成签到 ,获得积分10
14秒前
火羊宝完成签到 ,获得积分10
14秒前
455完成签到,获得积分10
16秒前
cis2014完成签到,获得积分10
16秒前
嘻嘻完成签到,获得积分10
17秒前
athena完成签到,获得积分10
17秒前
十七完成签到 ,获得积分10
18秒前
Zz完成签到,获得积分10
18秒前
清淮完成签到 ,获得积分10
18秒前
小新小新发布了新的文献求助10
19秒前
amault完成签到,获得积分10
20秒前
马小燕完成签到,获得积分10
20秒前
潇洒一曲完成签到,获得积分10
21秒前
笛九完成签到 ,获得积分10
22秒前
机智咖啡豆完成签到 ,获得积分10
24秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212724
求助须知:如何正确求助?哪些是违规求助? 4388755
关于积分的说明 13664611
捐赠科研通 4249384
什么是DOI,文献DOI怎么找? 2331550
邀请新用户注册赠送积分活动 1329282
关于科研通互助平台的介绍 1282695