UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA

激光雷达 遥感 高光谱成像 多光谱图像 均方误差 天蓬 植被(病理学) 树冠 环境科学 数字高程模型 地理 数学 医学 统计 考古 病理
作者
Temuulen Tsagaan Sankey,Jonathon J. Donager,Jason McVay,Joel B. Sankey
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:195: 30-43 被引量:360
标识
DOI:10.1016/j.rse.2017.04.007
摘要

Forest vegetation classification and structure measurements are fundamental steps for planning, monitoring, and evaluating large-scale forest changes including restoration treatments. High spatial and spectral resolution remote sensing data are critically needed to classify vegetation and measure their 3-dimensional (3D) canopy structure at the level of individual species. Here we test high-resolution lidar, hyperspectral, and multispectral data collected from unmanned aerial vehicles (UAV) and demonstrate a lidar-hyperspectral image fusion method in treated and control forests with varying tree density and canopy cover as well as in an ecotone environment to represent a gradient of vegetation and topography in northern Arizona, U.S.A. The fusion performs better (88% overall accuracy) than either data type alone, particularly for species with similar spectral signatures, but different canopy sizes. The lidar data provides estimates of individual tree height (R2 = 0.90; RMSE = 2.3 m) and crown diameter (R2 = 0.72; RMSE = 0.71 m) as well as total tree canopy cover (R2 = 0.87; RMSE = 9.5%) and tree density (R2 = 0.77; RMSE = 0.69 trees/cell) in 10 m cells across thin only, burn only, thin-and-burn, and control treatments, where tree cover and density ranged between 22 and 50% and 1–3.5 trees/cell, respectively. The lidar data also produces highly accurate digital elevation model (DEM) (R2 = 0.92; RMSE = 0.75 m). In comparison, 3D data derived from the multispectral data via structure-from-motion produced lower correlations with field-measured variables, especially in dense and structurally complex forests. The lidar, hyperspectral, and multispectral sensors, and the methods demonstrated here can be widely applied across a gradient of vegetation and topography for monitoring landscapes undergoing large-scale changes such as the forests in the southwestern U.S.A.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小达完成签到,获得积分10
刚刚
小达发布了新的文献求助10
3秒前
4秒前
流年完成签到,获得积分10
4秒前
4秒前
雷锤关注了科研通微信公众号
4秒前
5秒前
福尔摩柯完成签到,获得积分10
6秒前
喜悦的大侠完成签到 ,获得积分10
6秒前
7秒前
Anquan发布了新的文献求助10
7秒前
caidun发布了新的文献求助10
10秒前
10秒前
mit发布了新的文献求助10
10秒前
小蘑菇应助cc采纳,获得10
10秒前
11秒前
谷粱发布了新的文献求助10
12秒前
baozibaozi完成签到,获得积分10
13秒前
14秒前
Hello应助热情的阿猫桑采纳,获得10
15秒前
revew666完成签到,获得积分10
15秒前
独特的飞烟完成签到,获得积分10
15秒前
小蘑菇应助林中鹿采纳,获得10
16秒前
16秒前
zjh完成签到,获得积分10
17秒前
小猫爬楼梯完成签到,获得积分10
19秒前
19秒前
乐枳完成签到 ,获得积分10
19秒前
星宿陨完成签到,获得积分10
20秒前
完美世界应助caidun采纳,获得10
20秒前
21秒前
李爱国应助俊逸夜阑采纳,获得10
21秒前
22秒前
热情的阿猫桑完成签到,获得积分10
23秒前
大个应助oyasimi采纳,获得10
25秒前
25秒前
苹果南烟完成签到,获得积分10
26秒前
所所应助狂野傲南采纳,获得10
26秒前
26秒前
十倍沉完成签到,获得积分10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540650
求助须知:如何正确求助?哪些是违规求助? 3117973
关于积分的说明 9333262
捐赠科研通 2815801
什么是DOI,文献DOI怎么找? 1547752
邀请新用户注册赠送积分活动 721172
科研通“疑难数据库(出版商)”最低求助积分说明 712544