UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA

激光雷达 遥感 高光谱成像 多光谱图像 均方误差 天蓬 植被(病理学) 树冠 环境科学 数字高程模型 地理 数学 医学 统计 考古 病理
作者
Temuulen Tsagaan Sankey,Jonathon J. Donager,Jason McVay,Joel B. Sankey
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:195: 30-43 被引量:360
标识
DOI:10.1016/j.rse.2017.04.007
摘要

Forest vegetation classification and structure measurements are fundamental steps for planning, monitoring, and evaluating large-scale forest changes including restoration treatments. High spatial and spectral resolution remote sensing data are critically needed to classify vegetation and measure their 3-dimensional (3D) canopy structure at the level of individual species. Here we test high-resolution lidar, hyperspectral, and multispectral data collected from unmanned aerial vehicles (UAV) and demonstrate a lidar-hyperspectral image fusion method in treated and control forests with varying tree density and canopy cover as well as in an ecotone environment to represent a gradient of vegetation and topography in northern Arizona, U.S.A. The fusion performs better (88% overall accuracy) than either data type alone, particularly for species with similar spectral signatures, but different canopy sizes. The lidar data provides estimates of individual tree height (R2 = 0.90; RMSE = 2.3 m) and crown diameter (R2 = 0.72; RMSE = 0.71 m) as well as total tree canopy cover (R2 = 0.87; RMSE = 9.5%) and tree density (R2 = 0.77; RMSE = 0.69 trees/cell) in 10 m cells across thin only, burn only, thin-and-burn, and control treatments, where tree cover and density ranged between 22 and 50% and 1–3.5 trees/cell, respectively. The lidar data also produces highly accurate digital elevation model (DEM) (R2 = 0.92; RMSE = 0.75 m). In comparison, 3D data derived from the multispectral data via structure-from-motion produced lower correlations with field-measured variables, especially in dense and structurally complex forests. The lidar, hyperspectral, and multispectral sensors, and the methods demonstrated here can be widely applied across a gradient of vegetation and topography for monitoring landscapes undergoing large-scale changes such as the forests in the southwestern U.S.A.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
77发布了新的文献求助30
1秒前
一一一发布了新的文献求助10
4秒前
4秒前
6秒前
polaris发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
ding应助学术垃圾制造者采纳,获得10
15秒前
17秒前
jwb711发布了新的文献求助30
17秒前
17秒前
缓慢的誉发布了新的文献求助10
20秒前
健康的沂完成签到,获得积分10
21秒前
传奇3应助jwb711采纳,获得10
22秒前
22秒前
lrsabrina发布了新的文献求助10
25秒前
海心完成签到 ,获得积分10
26秒前
28秒前
sissiarno应助高大凌寒采纳,获得200
28秒前
QQ完成签到,获得积分10
31秒前
31秒前
潜山耕之发布了新的文献求助10
33秒前
佳里驳回了毛豆应助
33秒前
loin完成签到,获得积分10
33秒前
dfjeid发布了新的文献求助10
34秒前
科研通AI2S应助甜美的成败采纳,获得10
34秒前
瘦瘦白薇发布了新的文献求助10
35秒前
柴夫完成签到,获得积分10
36秒前
英姑应助x-17采纳,获得20
37秒前
38秒前
39秒前
默默的不二完成签到,获得积分10
39秒前
nini完成签到,获得积分10
39秒前
40秒前
40秒前
dfjeid完成签到,获得积分20
41秒前
43秒前
绝对快乐发布了新的文献求助10
44秒前
柴夫发布了新的文献求助10
45秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Artificial Intelligence, Co-Creation and Creativity 1000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 800
Ethnicities: Media, Health, and Coping 700
The Neotropical “Polymorphic Earless Praying Mantises”–Part II: Taxonomic Review of the Genera and Checklist of Species (Insecta: Mantodea, Acanthopoidea) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3089812
求助须知:如何正确求助?哪些是违规求助? 2741939
关于积分的说明 7567753
捐赠科研通 2392527
什么是DOI,文献DOI怎么找? 1268808
科研通“疑难数据库(出版商)”最低求助积分说明 614174
版权声明 598710