亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA

激光雷达 遥感 高光谱成像 多光谱图像 均方误差 天蓬 植被(病理学) 树冠 环境科学 数字高程模型 地理 数学 医学 统计 病理 考古
作者
Temuulen Tsagaan Sankey,Jonathon J. Donager,Jason McVay,Joel B. Sankey
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:195: 30-43 被引量:419
标识
DOI:10.1016/j.rse.2017.04.007
摘要

Forest vegetation classification and structure measurements are fundamental steps for planning, monitoring, and evaluating large-scale forest changes including restoration treatments. High spatial and spectral resolution remote sensing data are critically needed to classify vegetation and measure their 3-dimensional (3D) canopy structure at the level of individual species. Here we test high-resolution lidar, hyperspectral, and multispectral data collected from unmanned aerial vehicles (UAV) and demonstrate a lidar-hyperspectral image fusion method in treated and control forests with varying tree density and canopy cover as well as in an ecotone environment to represent a gradient of vegetation and topography in northern Arizona, U.S.A. The fusion performs better (88% overall accuracy) than either data type alone, particularly for species with similar spectral signatures, but different canopy sizes. The lidar data provides estimates of individual tree height (R2 = 0.90; RMSE = 2.3 m) and crown diameter (R2 = 0.72; RMSE = 0.71 m) as well as total tree canopy cover (R2 = 0.87; RMSE = 9.5%) and tree density (R2 = 0.77; RMSE = 0.69 trees/cell) in 10 m cells across thin only, burn only, thin-and-burn, and control treatments, where tree cover and density ranged between 22 and 50% and 1–3.5 trees/cell, respectively. The lidar data also produces highly accurate digital elevation model (DEM) (R2 = 0.92; RMSE = 0.75 m). In comparison, 3D data derived from the multispectral data via structure-from-motion produced lower correlations with field-measured variables, especially in dense and structurally complex forests. The lidar, hyperspectral, and multispectral sensors, and the methods demonstrated here can be widely applied across a gradient of vegetation and topography for monitoring landscapes undergoing large-scale changes such as the forests in the southwestern U.S.A.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助科研通管家采纳,获得10
17秒前
17秒前
Hayat应助科研通管家采纳,获得30
17秒前
所所应助悟空爱吃酥橙采纳,获得10
19秒前
32秒前
Yihan发布了新的文献求助10
39秒前
Leofar完成签到 ,获得积分10
57秒前
1分钟前
1分钟前
Willow完成签到 ,获得积分10
1分钟前
热情的橙汁完成签到,获得积分10
1分钟前
1分钟前
小二郎应助ceeray23采纳,获得20
1分钟前
1分钟前
2分钟前
朱可欣完成签到 ,获得积分10
2分钟前
wanci应助科研通管家采纳,获得10
2分钟前
小二郎应助科研通管家采纳,获得10
2分钟前
酷波er应助CC采纳,获得20
2分钟前
3分钟前
刘哈哈完成签到 ,获得积分10
3分钟前
CC发布了新的文献求助20
3分钟前
ceeray23发布了新的文献求助20
3分钟前
乐乐应助ceeray23采纳,获得20
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
科研通AI6应助CC采纳,获得10
3分钟前
搜集达人应助科研通管家采纳,获得10
4分钟前
和风完成签到 ,获得积分10
4分钟前
俏以完成签到,获得积分10
4分钟前
体贴静竹完成签到 ,获得积分10
5分钟前
5分钟前
星辰大海应助科研通管家采纳,获得10
6分钟前
清晨仪仪发布了新的文献求助10
6分钟前
6分钟前
朴素尔阳发布了新的文献求助10
6分钟前
6分钟前
webmaster完成签到,获得积分10
6分钟前
向东是大海完成签到,获得积分10
6分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622241
求助须知:如何正确求助?哪些是违规求助? 4707275
关于积分的说明 14938986
捐赠科研通 4769808
什么是DOI,文献DOI怎么找? 2552255
邀请新用户注册赠送积分活动 1514348
关于科研通互助平台的介绍 1475053