INbreast

乳腺摄影术 计算机科学 乳房成像 医学 医学物理学 数据库 放射科 乳腺癌 癌症 内科学
作者
Inês Moreira,Igor Amaral,Inês Domingues,António Nuno Laia Cardoso,Maria João Cardoso,Jaime S. Cardoso
出处
期刊:Academic Radiology [Elsevier]
卷期号:19 (2): 236-248 被引量:791
标识
DOI:10.1016/j.acra.2011.09.014
摘要

Computer-aided detection and diagnosis (CAD) systems have been developed in the past two decades to assist radiologists in the detection and diagnosis of lesions seen on breast imaging exams, thus providing a second opinion. Mammographic databases play an important role in the development of algorithms aiming at the detection and diagnosis of mammary lesions. However, available databases often do not take into consideration all the requirements needed for research and study purposes. This article aims to present and detail a new mammographic database.Images were acquired at a breast center located in a university hospital (Centro Hospitalar de S. João [CHSJ], Breast Centre, Porto) with the permission of the Portuguese National Committee of Data Protection and Hospital's Ethics Committee. MammoNovation Siemens full-field digital mammography, with a solid-state detector of amorphous selenium was used.The new database-INbreast-has a total of 115 cases (410 images) from which 90 cases are from women with both breasts affected (four images per case) and 25 cases are from mastectomy patients (two images per case). Several types of lesions (masses, calcifications, asymmetries, and distortions) were included. Accurate contours made by specialists are also provided in XML format.The strengths of the actually presented database-INbreast-relies on the fact that it was built with full-field digital mammograms (in opposition to digitized mammograms), it presents a wide variability of cases, and is made publicly available together with precise annotations. We believe that this database can be a reference for future works centered or related to breast cancer imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
mingyue应助稳重的愫采纳,获得10
1秒前
1秒前
1秒前
1秒前
漫天繁星发布了新的文献求助10
1秒前
gb完成签到 ,获得积分10
1秒前
柚子发布了新的文献求助10
2秒前
4秒前
缓慢的夕阳完成签到,获得积分10
4秒前
4秒前
考研小白发布了新的文献求助10
5秒前
lMiraclel发布了新的文献求助10
5秒前
5秒前
英姑应助炙热的素采纳,获得10
5秒前
6秒前
chenlc完成签到,获得积分20
7秒前
Nicole完成签到,获得积分10
8秒前
今后应助Anonymous采纳,获得10
8秒前
Xin完成签到,获得积分10
9秒前
9秒前
10秒前
13633501455完成签到,获得积分10
10秒前
10秒前
chenlc发布了新的文献求助10
10秒前
lMiraclel完成签到,获得积分10
11秒前
炙热的素完成签到,获得积分10
12秒前
13秒前
13秒前
诚心的黑猫完成签到,获得积分10
13秒前
wz完成签到,获得积分10
13秒前
打打应助TCB采纳,获得10
15秒前
sssaasa完成签到,获得积分10
16秒前
若初拾光发布了新的文献求助10
17秒前
希望天下0贩的0应助Myx采纳,获得10
17秒前
17秒前
wz发布了新的文献求助10
19秒前
如意契关注了科研通微信公众号
19秒前
吃一口王俊凯完成签到,获得积分10
19秒前
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308145
求助须知:如何正确求助?哪些是违规求助? 2941687
关于积分的说明 8504876
捐赠科研通 2616322
什么是DOI,文献DOI怎么找? 1429586
科研通“疑难数据库(出版商)”最低求助积分说明 663807
邀请新用户注册赠送积分活动 648793