Truck-drone team logistics: A heuristic approach to multi-drop route planning

无人机 计算机科学 车辆路径问题 布线(电子设计自动化) 模拟退火 卡车 启发式 运筹学 数学优化 工程类 人工智能 算法 嵌入式系统 数学 遗传学 生物 航空航天工程
作者
Pedro Luis González Rodríguez,David Canca,José L. Andrade-Pineda,Marcos Calle Suárez,Jose Miguel Leon-Blanco
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:114: 657-680 被引量:151
标识
DOI:10.1016/j.trc.2020.02.030
摘要

Recently there have been significant developments and applications in the field of unmanned aerial vehicles (UAVs). In a few years, these applications will be fully integrated into our lives. The practical application and use of UAVs presents several problems that are of a different nature to the specific technology of the components involved. Among them, the most relevant problem deriving from the use of UAVs in logistics distribution tasks is the so-called “last mile” delivery. In the present work, we focus on the resolution of the truck-drone team logistics problem. The problems of tandem routing have a complex structure and have only been partially addressed in the scientific literature. The use of UAVs raises a series of restrictions and considerations that did not appear previously in routing problems; most notably, aspects such as the limited power-life of batteries used by the UAVs and the determination of rendezvous points where they are replaced by fully-charged new batteries. These difficulties have until now limited the mathematical formulation of truck-drone routing problems and their resolution to mainly small-size cases. To overcome these limitations we propose an iterated greedy heuristic based on the iterative process of destruction and reconstruction of solutions. This process is orchestrated by a global optimization scheme using a simulated annealing (SA) algorithm. We test our approach in a large set of instances of different sizes taken from literature. The obtained results are quite promising, even for large-size scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助周凡淇采纳,获得10
刚刚
zho应助周凡淇采纳,获得10
刚刚
吴涛发布了新的文献求助10
刚刚
凌云客发布了新的文献求助10
3秒前
kiterunner发布了新的文献求助10
4秒前
迷你的怀莲完成签到 ,获得积分10
4秒前
4秒前
赘婿应助谦让月饼采纳,获得10
5秒前
YUE给YUE的求助进行了留言
5秒前
5秒前
小西贝发布了新的文献求助10
5秒前
5秒前
7秒前
8秒前
Echodeng完成签到,获得积分10
9秒前
杨坤发布了新的文献求助10
10秒前
10秒前
11秒前
wtc发布了新的文献求助10
14秒前
Lx发布了新的文献求助10
14秒前
15秒前
情怀应助xushanqi采纳,获得10
17秒前
科研通AI2S应助Chen采纳,获得30
18秒前
18秒前
20秒前
无响应完成签到 ,获得积分10
20秒前
起点完成签到,获得积分10
20秒前
君莫笑完成签到,获得积分10
22秒前
充电宝应助王景采纳,获得10
25秒前
科目三应助坚强的茗茗采纳,获得10
25秒前
轻松刚发布了新的文献求助10
25秒前
淡然立轩完成签到,获得积分10
25秒前
儒雅谷云完成签到 ,获得积分10
25秒前
bkagyin应助orange9采纳,获得10
26秒前
无花果应助野原向日葵采纳,获得10
26秒前
我是老大应助科科科研采纳,获得10
27秒前
28秒前
29秒前
31秒前
Orange应助z00277采纳,获得10
32秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125620
求助须知:如何正确求助?哪些是违规求助? 2775921
关于积分的说明 7728309
捐赠科研通 2431379
什么是DOI,文献DOI怎么找? 1291979
科研通“疑难数据库(出版商)”最低求助积分说明 622295
版权声明 600376