Truck-drone team logistics: A heuristic approach to multi-drop route planning

无人机 计算机科学 车辆路径问题 布线(电子设计自动化) 模拟退火 卡车 启发式 运筹学 数学优化 工程类 人工智能 算法 嵌入式系统 数学 遗传学 生物 航空航天工程
作者
Pedro Luis González Rodríguez,David Canca,José L. Andrade-Pineda,Marcos Calle Suárez,Jose Miguel Leon-Blanco
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:114: 657-680 被引量:159
标识
DOI:10.1016/j.trc.2020.02.030
摘要

Recently there have been significant developments and applications in the field of unmanned aerial vehicles (UAVs). In a few years, these applications will be fully integrated into our lives. The practical application and use of UAVs presents several problems that are of a different nature to the specific technology of the components involved. Among them, the most relevant problem deriving from the use of UAVs in logistics distribution tasks is the so-called “last mile” delivery. In the present work, we focus on the resolution of the truck-drone team logistics problem. The problems of tandem routing have a complex structure and have only been partially addressed in the scientific literature. The use of UAVs raises a series of restrictions and considerations that did not appear previously in routing problems; most notably, aspects such as the limited power-life of batteries used by the UAVs and the determination of rendezvous points where they are replaced by fully-charged new batteries. These difficulties have until now limited the mathematical formulation of truck-drone routing problems and their resolution to mainly small-size cases. To overcome these limitations we propose an iterated greedy heuristic based on the iterative process of destruction and reconstruction of solutions. This process is orchestrated by a global optimization scheme using a simulated annealing (SA) algorithm. We test our approach in a large set of instances of different sizes taken from literature. The obtained results are quite promising, even for large-size scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
07关闭了07文献求助
1秒前
六六发布了新的文献求助10
1秒前
王佳佳发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
Twonej给研友_8oYPrn的求助进行了留言
2秒前
2秒前
Yxian发布了新的文献求助10
2秒前
legend发布了新的文献求助10
2秒前
Charon完成签到,获得积分10
3秒前
Hwenjing完成签到,获得积分10
3秒前
4秒前
单薄书蕾发布了新的文献求助10
5秒前
276868sxzz发布了新的文献求助10
5秒前
白熊完成签到 ,获得积分10
5秒前
Khalil发布了新的文献求助10
5秒前
一线忧思发布了新的文献求助10
6秒前
leilei发布了新的文献求助10
6秒前
songjiatian完成签到,获得积分10
7秒前
YUNI完成签到,获得积分10
7秒前
123发布了新的文献求助10
7秒前
7秒前
jxuexiong发布了新的文献求助10
8秒前
Owen应助炙热盼兰采纳,获得10
9秒前
二猫完成签到,获得积分10
10秒前
熊姣凤完成签到,获得积分10
10秒前
科研通AI6.1应助YUNI采纳,获得10
11秒前
丰富青文完成签到,获得积分10
11秒前
科研通AI2S应助俊逸寻菡采纳,获得10
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
14秒前
14秒前
负责的调料汁完成签到,获得积分10
14秒前
贪玩钢铁侠完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784063
求助须知:如何正确求助?哪些是违规求助? 5680443
关于积分的说明 15462954
捐赠科研通 4913367
什么是DOI,文献DOI怎么找? 2644620
邀请新用户注册赠送积分活动 1592452
关于科研通互助平台的介绍 1547078