Truck-drone team logistics: A heuristic approach to multi-drop route planning

无人机 计算机科学 车辆路径问题 布线(电子设计自动化) 模拟退火 卡车 启发式 运筹学 数学优化 工程类 人工智能 算法 嵌入式系统 数学 遗传学 生物 航空航天工程
作者
Pedro Luis González Rodríguez,David Canca,José L. Andrade-Pineda,Marcos Calle Suárez,Jose Miguel Leon-Blanco
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:114: 657-680 被引量:159
标识
DOI:10.1016/j.trc.2020.02.030
摘要

Recently there have been significant developments and applications in the field of unmanned aerial vehicles (UAVs). In a few years, these applications will be fully integrated into our lives. The practical application and use of UAVs presents several problems that are of a different nature to the specific technology of the components involved. Among them, the most relevant problem deriving from the use of UAVs in logistics distribution tasks is the so-called “last mile” delivery. In the present work, we focus on the resolution of the truck-drone team logistics problem. The problems of tandem routing have a complex structure and have only been partially addressed in the scientific literature. The use of UAVs raises a series of restrictions and considerations that did not appear previously in routing problems; most notably, aspects such as the limited power-life of batteries used by the UAVs and the determination of rendezvous points where they are replaced by fully-charged new batteries. These difficulties have until now limited the mathematical formulation of truck-drone routing problems and their resolution to mainly small-size cases. To overcome these limitations we propose an iterated greedy heuristic based on the iterative process of destruction and reconstruction of solutions. This process is orchestrated by a global optimization scheme using a simulated annealing (SA) algorithm. We test our approach in a large set of instances of different sizes taken from literature. The obtained results are quite promising, even for large-size scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
该睡觉啦完成签到,获得积分20
刚刚
刚刚
莫x莫完成签到 ,获得积分10
2秒前
loewy完成签到,获得积分10
2秒前
黄婷发布了新的文献求助10
2秒前
2秒前
yuan完成签到,获得积分10
2秒前
zho发布了新的文献求助10
2秒前
2秒前
苏苏完成签到,获得积分10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得80
3秒前
Hello应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
万能图书馆应助内向秋寒采纳,获得10
3秒前
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
zzzq应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得30
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
soso应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
4秒前
orixero应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
zzzq应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
hzauhzau发布了新的文献求助10
4秒前
4秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794