Principal interacting orbital: A chemically intuitive method for deciphering bonding interaction

离域电子 原子轨道 分子轨道 碎片分子轨道 局域分子轨道 化学物理 计算机科学 计算化学 化学 价键理论 分子 物理 电子 量子力学 有机化学
作者
Jing‐Xuan Zhang,Fu Kit Sheong,Zhenyang Lin
出处
期刊:Wiley Interdisciplinary Reviews: Computational Molecular Science [Wiley]
卷期号:10 (6) 被引量:66
标识
DOI:10.1002/wcms.1469
摘要

Abstract Modular bonding picture is a central part of chemical understanding as exemplified by the wide usage of Lewis structure as a chemical language to describe molecular electronic structures. A chemically intuitive bonding picture requires the descriptors to be localized and transferable. Molecular orbitals directly derived from quantum calculations are too delocalized to interpret in this regard, hence many efforts have been devoted to the development of bonding analysis methods. After a brief overview of various bonding analysis methods, this review outlines the framework of principal interacting orbital (PIO) analysis and presents its role in recovering intuitive chemical concepts and producing modular bonding pictures. The PIO analysis identifies the most important fragment orbitals that are involved in fragment interactions and characterizes a one‐to‐one orbital interaction pattern that underlies a unique set of bonding and anti‐bonding orbitals derived from pairwise orbital interactions between two fragments. By making use of the principal component analysis (PCA), PIO analysis can effectively combine complex delocalized interaction patterns involved in numerous molecular orbitals into a handful of localized PIOs to provide easily interpretable results with intimate connection to localized chemical concepts, while maintaining necessary delocalized features when dealing with systems that involve mutlicentered interactions such as cluster compounds and various reactions. Such adaptability guarantees the robustness of PIO analysis with respect to change of substituents and the transferability of obtained PIOs across different systems. This article is categorized under: Structure and Mechanism > Molecular Structures
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxfsx应助左右采纳,获得10
刚刚
Li818发布了新的文献求助10
刚刚
刚刚
高工发布了新的文献求助10
刚刚
刚刚
natmed完成签到,获得积分10
1秒前
隋阳完成签到 ,获得积分10
2秒前
我快要崩溃了完成签到,获得积分10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得100
2秒前
ccm应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
MM应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
3秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
liao应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
ccm应助科研通管家采纳,获得10
4秒前
keke发布了新的文献求助10
5秒前
5秒前
阿阿阿Q发布了新的文献求助10
5秒前
ly完成签到 ,获得积分10
6秒前
6秒前
酷波er应助星期六采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458149
求助须知:如何正确求助?哪些是违规求助? 4564260
关于积分的说明 14294271
捐赠科研通 4489098
什么是DOI,文献DOI怎么找? 2458842
邀请新用户注册赠送积分活动 1448759
关于科研通互助平台的介绍 1424403