Principal interacting orbital: A chemically intuitive method for deciphering bonding interaction

离域电子 原子轨道 分子轨道 碎片分子轨道 局域分子轨道 化学物理 计算机科学 计算化学 化学 价键理论 分子 物理 电子 量子力学 有机化学
作者
Jing‐Xuan Zhang,Fu Kit Sheong,Zhenyang Lin
出处
期刊:Wiley Interdisciplinary Reviews: Computational Molecular Science [Wiley]
卷期号:10 (6) 被引量:66
标识
DOI:10.1002/wcms.1469
摘要

Abstract Modular bonding picture is a central part of chemical understanding as exemplified by the wide usage of Lewis structure as a chemical language to describe molecular electronic structures. A chemically intuitive bonding picture requires the descriptors to be localized and transferable. Molecular orbitals directly derived from quantum calculations are too delocalized to interpret in this regard, hence many efforts have been devoted to the development of bonding analysis methods. After a brief overview of various bonding analysis methods, this review outlines the framework of principal interacting orbital (PIO) analysis and presents its role in recovering intuitive chemical concepts and producing modular bonding pictures. The PIO analysis identifies the most important fragment orbitals that are involved in fragment interactions and characterizes a one‐to‐one orbital interaction pattern that underlies a unique set of bonding and anti‐bonding orbitals derived from pairwise orbital interactions between two fragments. By making use of the principal component analysis (PCA), PIO analysis can effectively combine complex delocalized interaction patterns involved in numerous molecular orbitals into a handful of localized PIOs to provide easily interpretable results with intimate connection to localized chemical concepts, while maintaining necessary delocalized features when dealing with systems that involve mutlicentered interactions such as cluster compounds and various reactions. Such adaptability guarantees the robustness of PIO analysis with respect to change of substituents and the transferability of obtained PIOs across different systems. This article is categorized under: Structure and Mechanism > Molecular Structures

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微笑迎曼发布了新的文献求助10
刚刚
刚刚
传奇3应助包容的水壶采纳,获得10
2秒前
Owen应助wuxunxun2015采纳,获得10
3秒前
4秒前
Pan1完成签到,获得积分10
7秒前
彭于晏应助科研通管家采纳,获得10
8秒前
Jahen发布了新的文献求助10
8秒前
大龙哥886应助科研通管家采纳,获得10
8秒前
大龙哥886应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得10
9秒前
9秒前
BowieHuang应助科研通管家采纳,获得10
9秒前
大龙哥886应助科研通管家采纳,获得10
9秒前
彭于晏应助科研通管家采纳,获得20
9秒前
9秒前
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
koukeika发布了新的文献求助10
10秒前
科研通AI6应助念神珠恋玥采纳,获得10
10秒前
小诸葛完成签到,获得积分10
11秒前
11秒前
xiaoxie完成签到 ,获得积分10
12秒前
12秒前
12秒前
13秒前
香蕉觅云应助SamXia采纳,获得10
14秒前
友好的匪发布了新的文献求助50
15秒前
娄泽坤发布了新的文献求助10
15秒前
热心幻天发布了新的文献求助10
15秒前
FashionBoy应助俊逸的翅膀采纳,获得10
16秒前
传奇3应助YY采纳,获得50
17秒前
YW完成签到,获得积分10
17秒前
Hathaway完成签到,获得积分10
18秒前
丘比特应助牧子睿采纳,获得10
20秒前
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613310
求助须知:如何正确求助?哪些是违规求助? 4698482
关于积分的说明 14898087
捐赠科研通 4735844
什么是DOI,文献DOI怎么找? 2546985
邀请新用户注册赠送积分活动 1510961
关于科研通互助平台的介绍 1473545