交替链格孢
生物
孢子萌发
菌丝体
微生物学
烟草
蛋白激酶A
生物化学
植物
激酶
孢子
基因
作者
Liu He,Jianguang Chen,Zihao Xia,Mengnan An,WU Yuan-hua
标识
DOI:10.1016/j.pestbp.2019.11.005
摘要
Microbial secondary metabolites produced by Streptomyces are applied to control plant diseases. ε-poly-l-lysine (ε-PL) is a non-toxic food preservative, but the potential application of ε-PL as a microbial fungicide in agriculture has rarely been reported. In this study, Alternaria alternata (A. alternata) was used to reveal the effect and mode of action for ε-PL on the plant pathogenic fungi. The results showed that ε-PL effectively inhibited necrotic-lesion development caused by A. alternata on tobacco. Mycelial growth was also significantly inhibited in vitro by 100 μg/ml ε-PL using in vitro analysis. Moreover, 25 μg/ml ε-PL inhibited spore germination and induced abnormal morphological development of A. alternata hyphae. To clarify the molecular-genetic antifungal mechanisms, we selected several crucial genes involved in the development and pathogenesis of A. alternata and studied their expression regulated by ε-PL. Results of real-time quantitative PCR showed that a mycelium morphology and pathogenic process related cyclic adenosine monophosphate protein (cAMP) dependent protein kinase A (PKA), Alternaria alternata cAMP-dependent protein kinase catalytic subunit (AAPK1) and the early infection-related glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were down-regulated after ε-PL treatment. The results provide novel insights for the application of ε-PL in the control of plant diseases caused by A. alternata.
科研通智能强力驱动
Strongly Powered by AbleSci AI