NIMG-76. RADIOPATHOMICS: INTEGRATION OF RADIOGRAPHIC AND HISTOLOGIC CHARACTERISTICS FOR PROGNOSTICATION IN GLIOBLASTOMA

胶质母细胞瘤 医学 射线照相术 皮尔逊积矩相关系数 模式识别(心理学) 人工智能 放射科 核医学 计算机科学 统计 数学 癌症研究
作者
Saima Rathore,Muhammad Aksam Iftikhar,Metin N. Gürcan,Zissimos P. Mourelatos
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:21 (Supplement_6): vi178-vi179 被引量:8
标识
DOI:10.1093/neuonc/noz175.745
摘要

Abstract INTRODUCTION Large number of diverse imaging [e.g., multi-parametric MRI (mpMRI), and digital pathology images] and non-imaging (e.g., clinical) biomedical data streams are being routinely acquired as part of the standard clinical workflow for glioblastoma patients. However, under the current clinical practice, these data streams are not collectively used for diagnosis. We sought to assess the synergies between pathologic, and radiomic features by evaluating the predictive value of each group of features and their combinations through a prognostic classifier. METHODS The mpMRI (T1,T1-Gd,T2,T2-FLAIR) and corresponding digital pathology images for 135 de novo glioblastoma was acquired from TCIA. An extensive panel of handcrafted features, including shape, volume, intensity distributions, gray-level co-occurrence matrix based texture, was extracted from delineated tumor regions of mpMRI scans. A set of 100 region-of-interest each comprising 1024x1024 that contained viable tumor with descriptive histologic characteristics and that were free of artifacts were extracted from digital pathology images, and were quantified in terms of nuclear texture features, and nuclear intensity and gradient statistics. A support vector regression multivariately integrated these features towards a marker of overall-survival. The accuracy of the predictive model for each group of features, and their combinations, was determined via a 10-fold cross-validation scheme. RESULTS The Pearson correlation coefficient between the survival scores predicted by SVR and the actual survival scores was estimated to be 0.75 and 0.77 for radiographic and pathologic data, however, the integration of these data yielded a clear improvement in correlation (0.81), supporting the synergistic value of these features in the prognostic model. CONCLUSION Radiomic features extracted from preoperative mpMRI, when used together with digital pathology features, offer synergistic value in assessment of prognosis in individual patients. The proposed radiopathomics marker may contribute to (i) stratification of patients into clinical trials, (ii) patient selection for targeted therapy, and (iii) personalized treatment planning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
John发布了新的文献求助10
刚刚
安康完成签到,获得积分10
刚刚
刚刚
眼睛大的断缘完成签到,获得积分10
1秒前
王芋圆发布了新的文献求助10
1秒前
bear发布了新的文献求助10
2秒前
LF发布了新的文献求助10
2秒前
善学以致用应助yyyyyy采纳,获得10
2秒前
小姚完成签到,获得积分10
2秒前
日富一日完成签到,获得积分10
2秒前
酷波er应助糖糖糖采纳,获得10
2秒前
3秒前
依依发布了新的文献求助10
3秒前
KKK发布了新的文献求助20
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
傲娇的越泽完成签到,获得积分20
4秒前
wanci应助科研大捞采纳,获得10
4秒前
缓慢不悔应助忧伤的冰彤采纳,获得10
4秒前
欣于所遇完成签到,获得积分10
5秒前
5秒前
ycxxyc发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
852应助微凉采纳,获得10
7秒前
7秒前
7秒前
taotao216发布了新的文献求助10
7秒前
星辰大海应助生活的花采纳,获得10
7秒前
科目三应助科研工作者采纳,获得10
7秒前
8秒前
言言完成签到,获得积分10
8秒前
科研通AI6应助yyy采纳,获得10
9秒前
HOAN应助是帆帆呀采纳,获得30
10秒前
HAOHAO发布了新的文献求助10
10秒前
qqw完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
11秒前
王芋圆完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894