NIMG-76. RADIOPATHOMICS: INTEGRATION OF RADIOGRAPHIC AND HISTOLOGIC CHARACTERISTICS FOR PROGNOSTICATION IN GLIOBLASTOMA

胶质母细胞瘤 医学 射线照相术 皮尔逊积矩相关系数 模式识别(心理学) 人工智能 放射科 核医学 计算机科学 统计 数学 癌症研究
作者
Saima Rathore,Muhammad Aksam Iftikhar,Metin N. Gürcan,Zissimos P. Mourelatos
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:21 (Supplement_6): vi178-vi179 被引量:8
标识
DOI:10.1093/neuonc/noz175.745
摘要

Abstract INTRODUCTION Large number of diverse imaging [e.g., multi-parametric MRI (mpMRI), and digital pathology images] and non-imaging (e.g., clinical) biomedical data streams are being routinely acquired as part of the standard clinical workflow for glioblastoma patients. However, under the current clinical practice, these data streams are not collectively used for diagnosis. We sought to assess the synergies between pathologic, and radiomic features by evaluating the predictive value of each group of features and their combinations through a prognostic classifier. METHODS The mpMRI (T1,T1-Gd,T2,T2-FLAIR) and corresponding digital pathology images for 135 de novo glioblastoma was acquired from TCIA. An extensive panel of handcrafted features, including shape, volume, intensity distributions, gray-level co-occurrence matrix based texture, was extracted from delineated tumor regions of mpMRI scans. A set of 100 region-of-interest each comprising 1024x1024 that contained viable tumor with descriptive histologic characteristics and that were free of artifacts were extracted from digital pathology images, and were quantified in terms of nuclear texture features, and nuclear intensity and gradient statistics. A support vector regression multivariately integrated these features towards a marker of overall-survival. The accuracy of the predictive model for each group of features, and their combinations, was determined via a 10-fold cross-validation scheme. RESULTS The Pearson correlation coefficient between the survival scores predicted by SVR and the actual survival scores was estimated to be 0.75 and 0.77 for radiographic and pathologic data, however, the integration of these data yielded a clear improvement in correlation (0.81), supporting the synergistic value of these features in the prognostic model. CONCLUSION Radiomic features extracted from preoperative mpMRI, when used together with digital pathology features, offer synergistic value in assessment of prognosis in individual patients. The proposed radiopathomics marker may contribute to (i) stratification of patients into clinical trials, (ii) patient selection for targeted therapy, and (iii) personalized treatment planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追寻的续完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
活泼的大船完成签到,获得积分10
6秒前
OeO完成签到 ,获得积分10
7秒前
小学生学免疫完成签到 ,获得积分10
8秒前
jh完成签到 ,获得积分10
12秒前
Ander完成签到 ,获得积分10
13秒前
jin完成签到,获得积分10
14秒前
15秒前
tian完成签到,获得积分10
16秒前
MrChew完成签到 ,获得积分10
17秒前
兴奋的定帮完成签到 ,获得积分0
20秒前
tian发布了新的文献求助10
22秒前
吉祥高趙完成签到 ,获得积分10
22秒前
顺心醉蝶完成签到 ,获得积分10
22秒前
清脆愫完成签到 ,获得积分10
24秒前
留胡子的火完成签到,获得积分10
25秒前
时笙完成签到 ,获得积分10
31秒前
jake完成签到,获得积分10
33秒前
羽化成仙完成签到 ,获得积分10
35秒前
Alone离殇完成签到 ,获得积分10
35秒前
干净山彤完成签到 ,获得积分10
36秒前
鲁路修完成签到,获得积分10
36秒前
huangrui完成签到 ,获得积分10
38秒前
kanong完成签到,获得积分0
41秒前
WW完成签到 ,获得积分10
45秒前
量子星尘发布了新的文献求助30
46秒前
firefly完成签到 ,获得积分10
47秒前
llll完成签到 ,获得积分10
50秒前
蓝桉完成签到 ,获得积分10
52秒前
研友_Z1eDgZ完成签到,获得积分10
56秒前
Amandar完成签到,获得积分10
57秒前
喻雷完成签到 ,获得积分10
57秒前
lilaccalla完成签到 ,获得积分10
1分钟前
舒适的天奇完成签到 ,获得积分10
1分钟前
如意2023完成签到 ,获得积分10
1分钟前
情怀应助科研通管家采纳,获得10
1分钟前
1分钟前
田様应助科研通管家采纳,获得10
1分钟前
xushaojun完成签到,获得积分20
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008738
求助须知:如何正确求助?哪些是违规求助? 3548380
关于积分的说明 11298823
捐赠科研通 3283051
什么是DOI,文献DOI怎么找? 1810290
邀请新用户注册赠送积分活动 885976
科研通“疑难数据库(出版商)”最低求助积分说明 811218