NIMG-76. RADIOPATHOMICS: INTEGRATION OF RADIOGRAPHIC AND HISTOLOGIC CHARACTERISTICS FOR PROGNOSTICATION IN GLIOBLASTOMA

胶质母细胞瘤 医学 射线照相术 皮尔逊积矩相关系数 模式识别(心理学) 人工智能 放射科 核医学 计算机科学 统计 数学 癌症研究
作者
Saima Rathore,Muhammad Aksam Iftikhar,Metin N. Gürcan,Zissimos P. Mourelatos
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:21 (Supplement_6): vi178-vi179 被引量:8
标识
DOI:10.1093/neuonc/noz175.745
摘要

Abstract INTRODUCTION Large number of diverse imaging [e.g., multi-parametric MRI (mpMRI), and digital pathology images] and non-imaging (e.g., clinical) biomedical data streams are being routinely acquired as part of the standard clinical workflow for glioblastoma patients. However, under the current clinical practice, these data streams are not collectively used for diagnosis. We sought to assess the synergies between pathologic, and radiomic features by evaluating the predictive value of each group of features and their combinations through a prognostic classifier. METHODS The mpMRI (T1,T1-Gd,T2,T2-FLAIR) and corresponding digital pathology images for 135 de novo glioblastoma was acquired from TCIA. An extensive panel of handcrafted features, including shape, volume, intensity distributions, gray-level co-occurrence matrix based texture, was extracted from delineated tumor regions of mpMRI scans. A set of 100 region-of-interest each comprising 1024x1024 that contained viable tumor with descriptive histologic characteristics and that were free of artifacts were extracted from digital pathology images, and were quantified in terms of nuclear texture features, and nuclear intensity and gradient statistics. A support vector regression multivariately integrated these features towards a marker of overall-survival. The accuracy of the predictive model for each group of features, and their combinations, was determined via a 10-fold cross-validation scheme. RESULTS The Pearson correlation coefficient between the survival scores predicted by SVR and the actual survival scores was estimated to be 0.75 and 0.77 for radiographic and pathologic data, however, the integration of these data yielded a clear improvement in correlation (0.81), supporting the synergistic value of these features in the prognostic model. CONCLUSION Radiomic features extracted from preoperative mpMRI, when used together with digital pathology features, offer synergistic value in assessment of prognosis in individual patients. The proposed radiopathomics marker may contribute to (i) stratification of patients into clinical trials, (ii) patient selection for targeted therapy, and (iii) personalized treatment planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
鸭心完成签到 ,获得积分20
1秒前
1秒前
123完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
wang应助likaaa采纳,获得30
4秒前
畅快蓝血完成签到 ,获得积分10
5秒前
ketaman发布了新的文献求助10
5秒前
嘴嘴给嘴嘴的求助进行了留言
6秒前
6秒前
香蕉觅云应助专一的荧采纳,获得10
6秒前
成就井完成签到,获得积分20
6秒前
无限大人完成签到,获得积分10
6秒前
犹豫的忆梅完成签到,获得积分10
7秒前
云出发布了新的文献求助10
7秒前
www发布了新的文献求助10
7秒前
7秒前
成就井发布了新的文献求助10
9秒前
常佳仟完成签到,获得积分10
9秒前
咖喱完成签到,获得积分10
10秒前
10秒前
yyw完成签到,获得积分10
11秒前
顺利毕业完成签到,获得积分10
11秒前
自信衬衫关注了科研通微信公众号
12秒前
13秒前
精明匪关注了科研通微信公众号
13秒前
慕课魔芋发布了新的文献求助10
13秒前
清浅发布了新的文献求助10
13秒前
Foremelon发布了新的文献求助10
13秒前
星海种花完成签到 ,获得积分10
13秒前
星魂完成签到,获得积分10
14秒前
14秒前
眉姐姐的藕粉桂花糖糕完成签到 ,获得积分10
14秒前
15秒前
15秒前
菠萝兔子发布了新的文献求助10
16秒前
16秒前
小溜溜发布了新的文献求助10
16秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156829
求助须知:如何正确求助?哪些是违规求助? 2808171
关于积分的说明 7876754
捐赠科研通 2466574
什么是DOI,文献DOI怎么找? 1312950
科研通“疑难数据库(出版商)”最低求助积分说明 630334
版权声明 601919