混溶性
过程(计算)
灵敏度(控制系统)
计算机科学
高斯分布
相关系数
人工智能
机器学习
数学
生物系统
材料科学
工程类
化学
聚合物
复合材料
计算化学
操作系统
生物
电子工程
作者
Gerald Kelechi Ekechukwu,Olugbenga Falode,O. D. Orodu
出处
期刊:Journal of Energy Resources Technology-transactions of The Asme
[ASME International]
日期:2020-06-12
卷期号:142 (12)
被引量:6
摘要
Abstract The minimum miscibility pressure (MMP) is one of the critical parameters needed in the successful design of a miscible gas injection for enhanced oil recovery purposes. In this study, we explore the capability of using the Gaussian process machine learning (GPML) approach, for accurate prediction of this vital property in both pure and impure CO2-injection streams. We first performed a sensitivity analysis of different kernels and then a comparative analysis with other techniques. The new GPML model, when compared with previously published predictive models, including both correlations and other machine learning (ML)/intelligent models, showed superior performance with the highest correlation coefficient and the lowest error metrics.
科研通智能强力驱动
Strongly Powered by AbleSci AI