Prediction of runway configurations and airport acceptance rates for multi-airport system using gridded weather forecast

跑道 空中交通管制 空中交通管理 相互依存 计算机科学 ASDE-X公司 过程(计算) 运筹学 气象学 工程类 航空航天工程 操作系统 物理 考古 历史 法学 政治学
作者
Yuan Wang,Yu Zhang
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:125: 103049-103049 被引量:15
标识
DOI:10.1016/j.trc.2021.103049
摘要

Accurate prediction of real-time airport capacity, a.k.a. airport acceptance rates (AARs), is key to enabling efficient air traffic flow management. AARs are dependent on selected runway configurations and both are affected by weather conditions. Although there have been studies tackling on the prediction of AARs or runway configurations or both, the prediction accuracy is relatively low and only single airport is considered. This study presents a data-driven deep-learning framework for predicting both runway configurations and AARs to support efficient air traffic management for complex multi-airport systems. The two major contributions from this work are 1) the proposed model uses assembled gridded weather forecast for the terminal airspace instead of an isolated station-based terminal weather forecast, and 2) the model captures the operational interdependency aspects inherent in the parameter learning process so that proposed modeling framework can predict both runway configuration and AARs simultaneously with higher accuracy. The proposed method is demonstrated with a numerical experiment taking three major airports in New York Metroplex as the case study. The prediction accuracy of the proposed method is compared with methods in current literature and the analysis results show that the proposed method outperforms all existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷酷太清完成签到,获得积分10
刚刚
唐唐完成签到 ,获得积分10
1秒前
SciGPT应助幽默科研人采纳,获得10
1秒前
霹雳小土豆-完成签到,获得积分0
1秒前
小路小路一夜暴富完成签到,获得积分10
2秒前
沫柠完成签到 ,获得积分10
3秒前
满意的寒凝完成签到 ,获得积分10
3秒前
科研通AI5应助妖风采纳,获得30
4秒前
领导范儿应助科研通管家采纳,获得30
4秒前
大模型应助科研通管家采纳,获得30
4秒前
幸福时光应助科研通管家采纳,获得10
4秒前
研友_LpQGjn完成签到 ,获得积分10
4秒前
mj789应助科研通管家采纳,获得20
4秒前
科目三应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
Singularity应助科研通管家采纳,获得10
4秒前
活力山蝶应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得30
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
5秒前
活力山蝶应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
pluto应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
7秒前
10秒前
舒心的秋荷完成签到 ,获得积分10
11秒前
13秒前
Richardisme完成签到 ,获得积分10
13秒前
彼得大帝发布了新的文献求助10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965831
求助须知:如何正确求助?哪些是违规求助? 3511154
关于积分的说明 11156535
捐赠科研通 3245761
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268