内分泌学
内科学
脂质代谢
CD36
脂肪肝
脂肪变性
脂肪生成
炎症
果糖
碳水化合物反应元件结合蛋白
巨噬细胞移动抑制因子
碳水化合物代谢
化学
脂肪酸合酶
促炎细胞因子
生物
受体
生物化学
细胞因子
医学
转录因子
基因
疾病
作者
Ljupka Gligorovska,Ana Teofilović,Danijela Vojnović Milutinović,Nenad Miladinović,Sanja Kovačević,Nataša Veličković,Ana Djordjević
出处
期刊:Biofactors
[Wiley]
日期:2021-01-31
卷期号:47 (3): 363-375
被引量:7
摘要
Abstract Dietary fructose can disturb hepatic lipid metabolism in a way that leads to lipid accumulation and steatosis, which is often accompanied with low‐grade inflammation. The macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine with important role not only in the regulation of inflammation, but also in the modulation of energy metabolism in the liver. Thus, the aim of this study was to investigate the role of Mif deficiency in fructose‐induced disturbances of hepatic lipid metabolism and ectopic lipid accumulation. Wild type (WT) and Mif deficient (MIF −/− ) C57Bl/6J mice were used to analyze the effects of 9‐week 20% fructose‐enriched diet on hepatic lipid metabolism (both lipogenesis and β‐oxidation) and histology, inflammatory status and glucocorticoid receptor (GR) signaling. The results showed fructose‐induced elevation of lipogenic genes (fatty acid synthase (Fas) and stearoyl‐CoA desaturase‐1 (Scd1) and transcriptional lipogenic regulators (liver X receptor (LXR), sterol regulatory element binding protein 1c (SREBP1c), and carbohydrate response element‐binding protein (ChREBP)). However, microvesicular fatty changes, accompanied with enhanced inflammation, were observable only in fructose‐fed Mif deficient animals, and were most likely result of GR activation and facilitated uptake and decreased β‐oxidation of FFA, as evidenced by elevated protein level of fatty acid translocase (FAT/CD36) and decreased carnitine palmitoyl transferase 1 (CPT1) level. In conclusion, the results show that Mif deficiency aggravates the effects of energy‐rich fructose diet on hepatic lipid accumulation, most likely through enhanced inflammation and activation of GR signaling pathway.
科研通智能强力驱动
Strongly Powered by AbleSci AI