Anti-CD20 Therapy Reliance on Antibody-Dependent Cellular Phagocytosis Affects Combination Drug Choice

抗体依赖性细胞介导的细胞毒性 奥图穆马 单克隆抗体 CD20 癌症研究 细胞毒性 抗体 流式细胞术 免疫学 化学 药理学 生物 体外 生物化学
作者
Charles C. Chu,Jonathan J. Pinney,Karl R. VanDerMeid,Raquel Izumi,Veerendra Munugalavadla,Paul M. Barr,Michael R. Elliott,Clive S. Zent
出处
期刊:Blood [American Society of Hematology]
卷期号:134 (Supplement_1): 682-682 被引量:3
标识
DOI:10.1182/blood-2019-124901
摘要

The efficacy of many therapeutic unconjugated monoclonal antibodies (mAbs), including those targeting CD20 in CLL, requires immune cell-mediated cytotoxicity. mAbs have often been optimized for natural killer (NK) cell antibody-dependent cellular cytotoxicity (ADCC) activity. However, in vivo mouse studies have shown that antibody-dependent cellular phagocytosis (ADCP) by macrophages is the major mechanism of clearance of circulating B cells by anti-CD20 mAbs. To directly compare ADCC versus ADCP, we previously used a panel of anti-CD20 mAbs (rituximab, ofatumumab, obinutuzimab, ocaratuzumab) to test cytotoxicity of paired human NK cells and monocyte-derived macrophages (hMDM) against CLL cells in vitro. All mAbs demonstrated ADCP activity at least 10-fold greater than ADCC as measured by CLL cell depletion per effector cell. Moreover, ADCC and ADCP activity levels did not correlate, meaning that ADCC cannot be used as a surrogate measure of ADCP for these mAb. This could explain why mAb optimization for ADCC activity has often failed to translate into more efficacious treatment. Thus, ADCP may be an effective translational measurement of anti-CD20 mAb performance. Because of the clinical interest in combining anti-CD20 mAb with targeted small molecule inhibitors, we began studying the effects of the Bruton tyrosine kinase (BTK) inhibitors on anti-CD20 mAb-mediated ADCP. Our initial studies showed that ibrutinib (IBR), but not acalabrutinib (Acala), significantly decreased anti-CD20 ADCP as measured by a flow cytometry-based assay that measures single timepoint cell collections. These types of assays cannot easily determine the kinetics and individual effector cell activity of ADCP. Thus, to more fully study the BTK inhibitor effects on ADCP, we developed a live cell time-lapse imaging method for measuring ADCP, utilizing recent advances in microscopy, cellular dye labeling, digital imaging, imaging software and computing. Whole-cell labeling of macrophages enabled visualization of internalized CLL cells as regions of dye exclusion or "voids". Because of the vast number of images acquired during live cell time-lapse imaging, we utilized computer software-aided image recognition and enumeration to measure the number of macrophages and voids inside each macrophage. As a measure of phagocytic engulfment, we developed a void index, which provides a relative measure of phagocytic engulfment per macrophage. Measuring ADCP in this manner replicates clinical observation of mAb therapeutic activity. Clinically, intravenous anti-CD20 mAb therapy typically induces a rapid decrease in circulating CLL cells (within hours), followed by a long period (days) of stable to increased levels of circulating cells. Similarly, our live cell time-lapse video assay shows initial rapid ADCP over the first 2 hours followed by a prolonged period of "hypophagia" with little ADCP for the remainder of the assay (imaged every 2 minutes for 8 hours). This "hypophagia" phenomenon may explain the resistance to therapeutic mAb observed clinically. With these new tools for quantitation of ADCP, we compared the effects of serial dilutions of IBR or Acala on ADCP. Overall, as measured by Area Under the Curve (AUC) analysis, IBR decreased phagocytic capacity of anti-CD20 mediated CLL cell ADCP at concentrations of 0.41 μM and above. By contrast, Acala did not begin to decrease AUC measurements until 3.7 μM, and subsequent AUC values were higher in Acala versus IBR-treated ADCP assays up to the highest tested drug concentration (100 μM). Similarly, the initial ADCP kinetics (void index / min over the first hour) reflected a decrease with IBR treatment at 0.41 μM that continued until a nadir was reached at 33 μM. In contrast, Acala did not induce a decrease in this kinetic measurement until 3.7 μM and a nadir was not reached (up to 100 μM). Thus, IBR significantly decreases ADCP by hMDM at concentrations much lower than a more specific BTK inhibitor, Acala. This result suggests that BTK inhibition has little to no effect on ADCP and furthermore suggests that IBR off-target effects decrease ADCP. IBR off-target candidates include other tyrosine kinases in the TEC (tyrosine kinase expressed in hepatocellular carcinoma) family. These data suggest that a a highly selective BTK inhibitor with little effect on ADCP could be a more suitable drug to combine with therapeutic mAb(s). Disclosures Chu: Pfizer: Equity Ownership; Acerta Pharma: Research Funding. VanDerMeid:AstraZeneca: Research Funding. Izumi:Acerta Pharma: Employment, Equity Ownership, Patents & Royalties: Acalabrutinib patents; AstraZeneca: Equity Ownership. Munugalavadla:Acerta Pharma: Employment; AstraZeneca, Gilead Sciences: Equity Ownership. Barr:TG Therapeutics: Consultancy, Research Funding; Celgene: Consultancy; Pharmacyclics LLC, an AbbVie company: Consultancy, Research Funding; Seattle Genetics: Consultancy; Merck: Consultancy; Genentech: Consultancy; Verastem: Consultancy; Gilead: Consultancy; Astra Zeneca: Consultancy, Research Funding; Janssen: Consultancy; AbbVie: Consultancy. Elliott:Astra Zeneca: Research Funding. Zent:Mentrik Biotech: Research Funding; Astra Zeneca: Research Funding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
豆子完成签到,获得积分10
1秒前
通~发布了新的文献求助10
2秒前
橘子哥完成签到,获得积分10
2秒前
mnm发布了新的文献求助10
3秒前
柔弱凡松发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
4秒前
SHDeathlock发布了新的文献求助50
4秒前
乐乐应助hu970采纳,获得10
4秒前
单薄白薇完成签到,获得积分10
6秒前
陈杰发布了新的文献求助10
6秒前
6秒前
6秒前
小张张发布了新的文献求助10
6秒前
乐乐应助YAN采纳,获得10
7秒前
迷惘墨香完成签到 ,获得积分10
8秒前
8秒前
Cynthia发布了新的文献求助30
8秒前
共享精神应助shenyanlei采纳,获得10
9秒前
wwww发布了新的文献求助10
9秒前
蔡菜菜完成签到,获得积分10
10秒前
852应助小余采纳,获得10
10秒前
饱满秋完成签到,获得积分10
11秒前
夜白发布了新的文献求助20
11秒前
搜集达人应助明月清风采纳,获得10
11秒前
希夷发布了新的文献求助10
12秒前
12秒前
爆米花应助通~采纳,获得10
12秒前
苏靖完成签到,获得积分10
12秒前
luoyutian发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
科研通AI5应助猪猪采纳,获得10
13秒前
13秒前
海绵体宝宝应助an采纳,获得10
14秒前
wwww完成签到,获得积分10
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762