色谱法
粘多糖病
糖胺聚糖
化学
串联质谱法
质谱法
液相色谱-质谱法
生物化学
作者
Junhua Wang,Akhil Bhalla,Julie C. Ullman,Meng Fang,Ritesh Ravi,Annie Arguello,Elliot R. Thomsen,Buyankhishig Tsogtbaatar,Jing Guo,Lukas L. Skuja,Jason C. Dugas,Sonnet S. Davis,Suresh B. Poda,Kannan Gunasekaran,Simona Costanzo,Zachary K. Sweeney,Anastasia G. Henry,Jeffrey M. Harris,Kirk R. Henne,Giuseppe Astarita
摘要
We recently developed a blood-brain barrier (BBB)-penetrating enzyme transport vehicle (ETV) fused to the lysosomal enzyme iduronate 2-sulfatase (ETV:IDS) and demonstrated its ability to reduce glycosaminoglycan (GAG) accumulation in the brains of a mouse model of mucopolysaccharidosis (MPS) II. To accurately quantify GAGs, we developed a plate-based high-throughput enzymatic digestion assay coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to simultaneously measure heparan sulfate and dermatan sulfate derived disaccharides in tissue, cerebrospinal fluid (CSF) and individual cell populations isolated from mouse brain. The method offers ultra-high sensitivity enabling quantitation of specific GAG species in as low as 100,000 isolated neurons and a low volume of CSF. With an LOD at 3 ng/mL and LLOQs at 5-10 ng/mL, this method is at least five times more sensitive than previously reported approaches. Our analysis demonstrated that the accumulation of CSF and brain GAGs are in good correlation, supporting the potential use of CSF GAGs as a surrogate biomarker for brain GAGs. The bioanalytical method was qualified through the generation of standard curves in matrix for preclinical studies of CSF, demonstrating the feasibility of this assay for evaluating therapeutic effects of ETV:IDS in future studies and applications in a wide variety of MPS disorders.
科研通智能强力驱动
Strongly Powered by AbleSci AI