Machine Learning for Atomic Simulation and Activity Prediction in Heterogeneous Catalysis: Current Status and Future

催化作用 集合(抽象数据类型) 表征(材料科学) 钥匙(锁) 计算机科学 多相催化 机器学习 纳米技术 生化工程 化学 人工智能 工程类 材料科学 有机化学 计算机安全 程序设计语言
作者
Sicong Ma,Zhi‐Pan Liu
出处
期刊:ACS Catalysis 卷期号:10 (22): 13213-13226 被引量:112
标识
DOI:10.1021/acscatal.0c03472
摘要

Heterogeneous catalysis, for its industrial importance and great complexity in structure, has long been the testing ground of new characterization techniques. Machine learning (ML) as a starring tool in data science brings new opportunities for chemists to interpret, simulate, and predict complex reactions in heterogeneous catalysis. Here we review the current status of ML methods and applications in heterogeneous catalysis by following two main streams: the top-down approach by learning experiment data and the bottom-up approach for making predictions from first-principles, which differ in the data source. We focus more on the latter, where ML interacts intimately with first-principles calculations for predicting the key properties (e.g., molecular adsorption energy) and evaluating potential energy surface (PES) to expedite the atomic simulation. The ML-based PES exploration represents the top gear that can largely replace the traditional roles of first-principles calculations for structure determination and activity evaluation but requires efficient methods for data set generation, sensitive structure descriptors to discriminate structures, and iterative self-learning to refine the ML potential. We illustrate these key ingredients of ML-based atomic simulation using the SSW-NN method developed by our group as the example. Three cases of SSW-NN application are presented to elaborate how ML can expedite the material and reaction simulation and lead to new findings on catalyst structure and reaction channels. The future directions of ML-based applications in heterogeneous catalysis are also discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shenwei完成签到 ,获得积分10
刚刚
kkkayle完成签到,获得积分10
2秒前
纯纯纯纯完成签到,获得积分10
2秒前
3秒前
牛牛向前冲完成签到,获得积分10
3秒前
dreek发布了新的文献求助10
4秒前
kkkayle发布了新的文献求助10
5秒前
moonzz发布了新的文献求助10
5秒前
共享精神应助linlang采纳,获得10
6秒前
顾矜应助achilles采纳,获得10
6秒前
7秒前
7秒前
美满疾应助俭朴外绣采纳,获得10
7秒前
壮观以松发布了新的文献求助10
10秒前
11秒前
14秒前
15秒前
www完成签到 ,获得积分10
17秒前
17秒前
情怀应助读个屁采纳,获得10
21秒前
Aurora完成签到,获得积分10
21秒前
24秒前
zzc发布了新的文献求助10
24秒前
24秒前
25秒前
小二郎应助明明采纳,获得10
27秒前
30秒前
实验顺利发布了新的文献求助10
31秒前
yichun完成签到,获得积分10
32秒前
34秒前
Lee发布了新的文献求助10
34秒前
上官若男应助林瓜瓜采纳,获得20
38秒前
Camellia应助yichun采纳,获得10
38秒前
一颗野生橘子完成签到,获得积分10
38秒前
彭于晏应助小白采纳,获得10
39秒前
大P小q关注了科研通微信公众号
40秒前
wangyuan完成签到,获得积分10
41秒前
41秒前
41秒前
42秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Synchrotron X-Ray Methods in Clay Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3340299
求助须知:如何正确求助?哪些是违规求助? 2968347
关于积分的说明 8633293
捐赠科研通 2647882
什么是DOI,文献DOI怎么找? 1449877
科研通“疑难数据库(出版商)”最低求助积分说明 671549
邀请新用户注册赠送积分活动 660574