Dynamics of H2O Adsorption on Pt(110)-(1 × 2) Based on a Neural Network Potential Energy Surface

粘着概率 吸附 化学物理 分子动力学 势能 密度泛函理论 原子物理学 化学 材料科学 统计物理学 热力学 物理 物理化学 计算化学 解吸
作者
Ce Hu,Yaolong Zhang,Bin Jiang
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:124 (42): 23190-23199 被引量:17
标识
DOI:10.1021/acs.jpcc.0c07182
摘要

Water adsorption on metal surfaces is of both fundamental and practical relevance to heterogeneous and electrocatalysis. Here, we report a comprehensive theoretical study on the dynamics of H2O adsorption on Pt(110)-(1 × 2) based on a neural network potential energy surface (PES) fit to thousands of density functional theory data points. This PES allows us to investigate the dynamics of molecular and dissociative adsorption of water on Pt(110)-(1 × 2) from first principles with no adjustable parameters. Specifically, we find a molecular adsorption well depth that is close to the experimental estimate with no entry barrier, leading to a monotonic decrease in initial sticking probability (S0) with increasing translational energy. While this translational energy dependence of S0 is consistent with the conventional mechanism for nonactivated adsorption and with earlier theoretical results, it is in qualitative disagreement with experimental data. Using an electronic friction model implemented with the local density friction approximation, we find that the low-energy electron–hole pair excitation mildly increases the trapping probability, whereas it has little influence on the translational energy dependence. Other possible factors, such as the rotational alignment and dynamical steering, which may be relevant to the discrepancy between theory and experiment, have also been discussed. On the other hand, the dissociative sticking probability is predicted as complementary information awaiting experimental confirmation. We hope that these results could motivate future experimental and theoretical studies to explore this puzzling gas–surface system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
健忘绿茶完成签到,获得积分10
1秒前
科研通AI5应助shoolarli采纳,获得10
1秒前
2秒前
FashionBoy应助蔺瑾瑜采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得20
3秒前
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
4秒前
彭于彦祖应助科研通管家采纳,获得20
4秒前
nnnd77发布了新的文献求助10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
4秒前
斯文败类应助科研通管家采纳,获得30
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
5秒前
5秒前
眯眯眼的世界应助Cat采纳,获得10
5秒前
踏实无敌应助甘新儿采纳,获得10
5秒前
6秒前
科研通AI5应助十二采纳,获得10
6秒前
成环醚发布了新的文献求助30
6秒前
sssa完成签到,获得积分20
6秒前
6秒前
FoxLY完成签到,获得积分10
7秒前
彩虹发布了新的文献求助10
7秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735423
求助须知:如何正确求助?哪些是违规求助? 3279372
关于积分的说明 10014345
捐赠科研通 2996002
什么是DOI,文献DOI怎么找? 1643782
邀请新用户注册赠送积分活动 781471
科研通“疑难数据库(出版商)”最低求助积分说明 749400