材料科学
自行车
动力学
钠
电池(电)
离子
热扩散率
多孔性
电极
电解质
化学工程
分析化学(期刊)
电化学
热力学
冶金
复合材料
物理化学
色谱法
化学
物理
工程类
功率(物理)
考古
有机化学
历史
量子力学
作者
Xianhong Rui,Xianghua Zhang,Shitan Xu,Huiteng Tan,Yu Jiang,Li Gan,Yuezhan Feng,Cheng Chao Li,Yan Yu
标识
DOI:10.1002/adfm.202009458
摘要
Abstract The increasingly stringent requirement in large‐scale energy storage necessitates the development of high‐performance sodium‐ion batteries (SIBs) that can operate under low‐temperature (LT) environment. Although SIBs can achieve good cycling stability and rate performance at room temperature, the sluggish electrochemical reaction kinetics at low temperature remains a great challenge for SIBs. Here, a superior LT SIB composed of 3D porous Na 3 V 2 (PO 4 ) 3 /C (NVP/C‐F) and NaTi 2 (PO 4 ) 3 /C foams (NTP/C‐F) is developed. First‐principles calculations reveal that the intrinsic Na + diffusivity in NASICON‐type NVP and NTP is extremely high (maximum 3.84 × 10 −5 for NVP and 2.94 × 10 −9 cm 2 s −1 for NTP) at –20 °C. In addition, the designed 3D interconnected porous foam structures demonstrate excellent electrolyte absorption ability and Na + transport performance at low temperature. As a result, under −20 °C, the NVP/CF and NTP/CF electrodes (half‐cell configuration) can attain reversible capacities close to their theoretical values, and are able to be charged and discharged rapidly (20 C) for 1000 cycles. Based on these features, the designed NTP/CF||NVP/CF full cell also displays superb LT kinetics and cycling stability, making a great stride forward in the development of LT SIBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI