亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development and validation of parsimonious algorithms to classify acute respiratory distress syndrome phenotypes: a secondary analysis of randomised controlled trials

医学 急性呼吸窘迫综合征 逻辑回归 特征选择 随机对照试验 随机森林 机器学习 人工智能 急性呼吸窘迫 算法 内科学 计算机科学
作者
Pratik Sinha,Kevin Delucchi,Daniel F. McAuley,Cecilia M. O’Kane,Michael A. Matthay,Carolyn S. Calfee
出处
期刊:The Lancet Respiratory Medicine [Elsevier BV]
卷期号:8 (3): 247-257 被引量:240
标识
DOI:10.1016/s2213-2600(19)30369-8
摘要

Using latent class analysis (LCA) in five randomised controlled trial (RCT) cohorts, two distinct phenotypes of acute respiratory distress syndrome (ARDS) have been identified: hypoinflammatory and hyperinflammatory. The phenotypes are associated with differential outcomes and treatment response. The objective of this study was to develop parsimonious models for phenotype identification that could be accurate and feasible to use in the clinical setting.In this retrospective study, three RCT cohorts from the National Lung, Heart, and Blood Institute ARDS Network (ARMA, ALVEOLI, and FACTT) were used as the derivation dataset (n=2022), from which the machine learning and logistic regression classifer models were derived, and a fourth (SAILS; n=715) from the same network was used as the validation test set. LCA-derived phenotypes in all of these cohorts served as the reference standard. Machine-learning algorithms (random forest, bootstrapped aggregating, and least absolute shrinkage and selection operator) were used to select a maximum of six important classifier variables, which were then used to develop nested logistic regression models. Only cases with complete biomarker data in the derivation dataset were used for variable selection. The best logistic regression models based on parsimony and predictive accuracy were then evaluated in the validation test set. Finally, the models' prognostic validity was tested in two external ARDS clinical trial datasets (START and HARP-2) by assessing mortality at days 28, 60, and 90 and ventilator-free days to day 28.The six most important classifier variables were interleukin (IL)-8, IL-6, protein C, soluble tumour necrosis factor receptor 1, bicarbonate, and vasopressor use. From the nested models, three-variable (IL-8, bicarbonate, and protein C) and four-variable (3-variable plus vasopressor use) models were adjudicated to be the best performing. In the validation test set, both models showed good accuracy (AUC 0·94 [95% CI 0·92-0·95] for the three-variable model and 0·95 [95% CI 0·93-0·96] for the four-variable model) against LCA classifications. As with LCA-derived phenotypes, the hyperinflammatory phenotype as identified by the classifier model was associated with higher mortality at day 90 (87 [39%] of 223 patients vs 112 [23%] of 492 patients; p<0·0001) and fewer ventilator-free days (median 14 days [IQR 0-22] vs 22 days [0-25]; p<0·0001). In the external validation datasets, three-variable models developed in the derivation dataset identified two phenotypes with distinct clinical features and outcomes consistent with previous findings, including differential survival with simvastatin versus placebo in HARP-2 (p=0·023 for survival at 28 days).ARDS phenotypes can be accurately identified with parsimonious classifier models using three or four variables. Pending the development of real-time testing for key biomarkers and prospective validation, these models could facilitate identification of ARDS phenotypes to enable their application in clinical trials and practice.National Institutes of Health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
12秒前
吾系渣渣辉完成签到 ,获得积分10
13秒前
MedicoYang发布了新的文献求助10
14秒前
毕业就行完成签到,获得积分10
14秒前
Brady6发布了新的文献求助50
17秒前
ceeray23应助MedicoYang采纳,获得10
18秒前
Duan完成签到 ,获得积分10
29秒前
汤圆完成签到 ,获得积分10
33秒前
Owen应助快乐的篮球采纳,获得10
35秒前
小神仙完成签到 ,获得积分10
40秒前
41秒前
懒羊羊完成签到 ,获得积分10
43秒前
44秒前
苹果绿发布了新的文献求助10
44秒前
Linda00发布了新的文献求助10
46秒前
48秒前
慕青应助RR采纳,获得10
50秒前
高高烙完成签到,获得积分10
52秒前
合适的语雪完成签到,获得积分20
54秒前
YYYY发布了新的文献求助30
57秒前
隐形曼青应助玖生采纳,获得10
59秒前
科研通AI5应助苹果绿采纳,获得10
1分钟前
jianglan完成签到,获得积分10
1分钟前
lijunliang完成签到,获得积分10
1分钟前
快乐的篮球完成签到,获得积分10
1分钟前
恋晨完成签到 ,获得积分10
1分钟前
想游泳的鹰完成签到,获得积分10
1分钟前
田様应助mkeale采纳,获得10
1分钟前
思辰。完成签到,获得积分10
1分钟前
852应助Brian_Lee采纳,获得10
1分钟前
1分钟前
WindStar完成签到,获得积分10
1分钟前
苹果绿完成签到,获得积分10
1分钟前
杨佳勋发布了新的文献求助10
1分钟前
hhdr完成签到 ,获得积分10
1分钟前
机灵的衬衫完成签到 ,获得积分10
1分钟前
科目三应助百浪多息采纳,获得10
1分钟前
1分钟前
烟花应助紫色奶萨采纳,获得10
1分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5198143
求助须知:如何正确求助?哪些是违规求助? 4379256
关于积分的说明 13637786
捐赠科研通 4235192
什么是DOI,文献DOI怎么找? 2323275
邀请新用户注册赠送积分活动 1321351
关于科研通互助平台的介绍 1272189