已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development and validation of parsimonious algorithms to classify acute respiratory distress syndrome phenotypes: a secondary analysis of randomised controlled trials

医学 急性呼吸窘迫综合征 逻辑回归 特征选择 随机对照试验 随机森林 机器学习 人工智能 急性呼吸窘迫 算法 内科学 计算机科学
作者
Pratik Sinha,Kevin Delucchi,Daniel F. McAuley,Cecilia M. O’Kane,Michael A. Matthay,Carolyn S. Calfee
出处
期刊:The Lancet Respiratory Medicine [Elsevier BV]
卷期号:8 (3): 247-257 被引量:219
标识
DOI:10.1016/s2213-2600(19)30369-8
摘要

Using latent class analysis (LCA) in five randomised controlled trial (RCT) cohorts, two distinct phenotypes of acute respiratory distress syndrome (ARDS) have been identified: hypoinflammatory and hyperinflammatory. The phenotypes are associated with differential outcomes and treatment response. The objective of this study was to develop parsimonious models for phenotype identification that could be accurate and feasible to use in the clinical setting.In this retrospective study, three RCT cohorts from the National Lung, Heart, and Blood Institute ARDS Network (ARMA, ALVEOLI, and FACTT) were used as the derivation dataset (n=2022), from which the machine learning and logistic regression classifer models were derived, and a fourth (SAILS; n=715) from the same network was used as the validation test set. LCA-derived phenotypes in all of these cohorts served as the reference standard. Machine-learning algorithms (random forest, bootstrapped aggregating, and least absolute shrinkage and selection operator) were used to select a maximum of six important classifier variables, which were then used to develop nested logistic regression models. Only cases with complete biomarker data in the derivation dataset were used for variable selection. The best logistic regression models based on parsimony and predictive accuracy were then evaluated in the validation test set. Finally, the models' prognostic validity was tested in two external ARDS clinical trial datasets (START and HARP-2) by assessing mortality at days 28, 60, and 90 and ventilator-free days to day 28.The six most important classifier variables were interleukin (IL)-8, IL-6, protein C, soluble tumour necrosis factor receptor 1, bicarbonate, and vasopressor use. From the nested models, three-variable (IL-8, bicarbonate, and protein C) and four-variable (3-variable plus vasopressor use) models were adjudicated to be the best performing. In the validation test set, both models showed good accuracy (AUC 0·94 [95% CI 0·92-0·95] for the three-variable model and 0·95 [95% CI 0·93-0·96] for the four-variable model) against LCA classifications. As with LCA-derived phenotypes, the hyperinflammatory phenotype as identified by the classifier model was associated with higher mortality at day 90 (87 [39%] of 223 patients vs 112 [23%] of 492 patients; p<0·0001) and fewer ventilator-free days (median 14 days [IQR 0-22] vs 22 days [0-25]; p<0·0001). In the external validation datasets, three-variable models developed in the derivation dataset identified two phenotypes with distinct clinical features and outcomes consistent with previous findings, including differential survival with simvastatin versus placebo in HARP-2 (p=0·023 for survival at 28 days).ARDS phenotypes can be accurately identified with parsimonious classifier models using three or four variables. Pending the development of real-time testing for key biomarkers and prospective validation, these models could facilitate identification of ARDS phenotypes to enable their application in clinical trials and practice.National Institutes of Health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
围炉夜话完成签到,获得积分10
1秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
6秒前
9秒前
14秒前
春天先生发布了新的文献求助10
14秒前
18秒前
ST完成签到,获得积分10
22秒前
25秒前
阿满完成签到 ,获得积分10
26秒前
alilu完成签到,获得积分10
26秒前
7777给7777的求助进行了留言
26秒前
苏苏苏关注了科研通微信公众号
27秒前
春天先生完成签到,获得积分20
27秒前
30秒前
牛马完成签到 ,获得积分10
31秒前
34秒前
35秒前
糟糕的铁锤完成签到,获得积分0
35秒前
39秒前
07完成签到 ,获得积分10
40秒前
李李发布了新的文献求助10
40秒前
fanhongpeng完成签到,获得积分10
43秒前
07关注了科研通微信公众号
46秒前
仰山雪完成签到 ,获得积分10
46秒前
47秒前
李李完成签到,获得积分20
48秒前
49秒前
52秒前
57秒前
ANESTHESIA_XY完成签到 ,获得积分10
58秒前
yulian发布了新的文献求助10
58秒前
alilu发布了新的文献求助10
1分钟前
汉堡包应助满意的世界采纳,获得30
1分钟前
cc完成签到 ,获得积分10
1分钟前
胡萝卜完成签到,获得积分10
1分钟前
火星上的宫苴完成签到 ,获得积分10
1分钟前
和谐白云完成签到,获得积分10
1分钟前
Snow完成签到 ,获得积分10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965542
求助须知:如何正确求助?哪些是违规求助? 3510831
关于积分的说明 11155263
捐赠科研通 3245323
什么是DOI,文献DOI怎么找? 1792808
邀请新用户注册赠送积分活动 874110
科研通“疑难数据库(出版商)”最低求助积分说明 804176