Graph InfoClust: Leveraging cluster-level node information for unsupervised graph representation learning

计算机科学 编码 图形 理论计算机科学 聚类分析 特征学习 节点(物理) 聚类系数 数据挖掘 人工智能 生物化学 结构工程 基因 工程类 化学
作者
Costas Mavromatis,George Karypis
出处
期刊:Cornell University - arXiv 被引量:14
标识
DOI:10.48550/arxiv.2009.06946
摘要

Unsupervised (or self-supervised) graph representation learning is essential to facilitate various graph data mining tasks when external supervision is unavailable. The challenge is to encode the information about the graph structure and the attributes associated with the nodes and edges into a low dimensional space. Most existing unsupervised methods promote similar representations across nodes that are topologically close. Recently, it was shown that leveraging additional graph-level information, e.g., information that is shared among all nodes, encourages the representations to be mindful of the global properties of the graph, which greatly improves their quality. However, in most graphs, there is significantly more structure that can be captured, e.g., nodes tend to belong to (multiple) clusters that represent structurally similar nodes. Motivated by this observation, we propose a graph representation learning method called Graph InfoClust (GIC), that seeks to additionally capture cluster-level information content. These clusters are computed by a differentiable K-means method and are jointly optimized by maximizing the mutual information between nodes of the same clusters. This optimization leads the node representations to capture richer information and nodal interactions, which improves their quality. Experiments show that GIC outperforms state-of-art methods in various downstream tasks (node classification, link prediction, and node clustering) with a 0.9% to 6.1% gain over the best competing approach, on average.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王彬完成签到,获得积分10
刚刚
晚来天欲雪完成签到,获得积分20
2秒前
Lc应助蓝桉采纳,获得20
2秒前
7秒前
XXXXL完成签到,获得积分10
9秒前
麦苗果果发布了新的文献求助10
11秒前
小夫同学发布了新的文献求助10
11秒前
12秒前
英姑应助谦让小松鼠采纳,获得10
12秒前
BKEL完成签到,获得积分10
15秒前
15秒前
lalala驳回了SciGPT应助
17秒前
kanwenxian发布了新的文献求助10
18秒前
今后应助解语花采纳,获得10
19秒前
七慕凉应助解语花采纳,获得10
19秒前
FashionBoy应助pineapple yang采纳,获得20
19秒前
麦苗果果完成签到,获得积分10
19秒前
Irene完成签到,获得积分10
20秒前
小二郎应助蓁66采纳,获得10
21秒前
21秒前
Hello应助陈曦采纳,获得10
21秒前
领导范儿应助hh采纳,获得10
22秒前
23秒前
艺涵发布了新的文献求助10
25秒前
孙燕应助闪闪泥猴桃采纳,获得30
26秒前
28秒前
28秒前
29秒前
30秒前
ss发布了新的文献求助30
30秒前
不安豪英发布了新的文献求助10
31秒前
32秒前
风清扬应助Qwe采纳,获得10
32秒前
蓁66发布了新的文献求助10
34秒前
如意枫叶发布了新的文献求助10
34秒前
认真初之发布了新的文献求助10
35秒前
小鼠星球发布了新的文献求助10
36秒前
38秒前
man发布了新的文献求助10
38秒前
风清扬应助xn201120采纳,获得10
38秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989550
求助须知:如何正确求助?哪些是违规求助? 3531774
关于积分的说明 11254747
捐赠科研通 3270278
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882125
科研通“疑难数据库(出版商)”最低求助积分说明 809176