Breadth-first piston diagnosing approach for segmented mirrors through supervised learning of multiple-wavelength images

活塞(光学) 计算机科学 人工智能 光学 波长 物理 波前
作者
Mei Hui,Weiqian Li,Yong Wu,Ming Liu,Liquan Dong,Lingqin Kong,Yuejin Zhao
出处
期刊:Applied Optics [The Optical Society]
卷期号:59 (32): 9963-9963 被引量:4
标识
DOI:10.1364/ao.402943
摘要

Piston diagnosing approaches for segmented mirrors via machine-learning have shown great success. However, they are inevitably challenged with 2 π ambiguity, and the accuracy is usually influenced by the location and number of submirrors. A piston diagnosing approach for segmented mirrors, which employs the breadth-first search (BFS) algorithm and supervised learning strategies of multi-wavelength images, is investigated. An original kind of object-independent and normalized dataset is generated by the in-focal and defocused images at different wavelengths. Additionally, the segmented mirrors are divided into several sub-models of binary tree and are traversed through the BFS algorithm. Furthermore, two deep image-based convolutional neural networks are constructed for predicting the ranges and values of piston aberrations. Finally, simulations are performed, and the accuracy is independent of the location and number of submirrors. The Pearson correlation coefficients for test sets are above 0.99, and the average root mean square error of segmented mirrors is approximately 0.01 λ . This technique allows the piston error between segmented mirrors to be measured without 2 π ambiguity. Moreover, it can be used for data collected by a real setup. Furthermore, it can be applied to segmented mirrors with different numbers of submirrors based on the sub-model of a binary tree.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柔柔完成签到,获得积分20
2秒前
3秒前
4秒前
4秒前
情怀应助Strike采纳,获得10
5秒前
5秒前
铮铮完成签到,获得积分10
6秒前
烟花应助无奈的老姆采纳,获得20
7秒前
8秒前
鳗鱼谷丝完成签到 ,获得积分10
9秒前
kk发布了新的文献求助10
11秒前
12秒前
cc发布了新的文献求助10
12秒前
君翊发布了新的文献求助10
12秒前
缓慢的雪卉完成签到 ,获得积分10
13秒前
Owen应助aui采纳,获得30
15秒前
Jasper应助Rainbow7采纳,获得10
15秒前
15秒前
16秒前
18秒前
缓慢的雪卉关注了科研通微信公众号
18秒前
atropine发布了新的文献求助10
18秒前
19秒前
LBR发布了新的文献求助10
20秒前
乐乐应助这不河狸采纳,获得10
21秒前
21秒前
呦呦发布了新的文献求助10
21秒前
22秒前
22秒前
Someone应助xdy采纳,获得10
22秒前
野子完成签到,获得积分20
23秒前
xxx_12完成签到,获得积分20
24秒前
优美飞薇完成签到,获得积分10
24秒前
丘比特应助拓跋傲薇采纳,获得10
24秒前
lyrelias发布了新的文献求助10
25秒前
酷炫应助若琳采纳,获得10
25秒前
NexusExplorer应助fifteen采纳,获得10
26秒前
kk完成签到,获得积分20
26秒前
27秒前
AlienU完成签到 ,获得积分10
28秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154374
求助须知:如何正确求助?哪些是违规求助? 2805268
关于积分的说明 7864039
捐赠科研通 2463452
什么是DOI,文献DOI怎么找? 1311340
科研通“疑难数据库(出版商)”最低求助积分说明 629556
版权声明 601821