High-speed droplet impingement on dry and wetted substrates

机械 压缩性 物理 工作(物理) 航空航天工程 机械工程 热力学 工程类
作者
Mason Marzbali,Ali Dolatabadi
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:32 (11) 被引量:33
标识
DOI:10.1063/5.0020977
摘要

High-speed droplet impact is of great interest to power generation and aerospace industries due to the accrued cost of maintenance in steam and gas turbines. The repetitive impacts of liquid droplets onto rotor blades, at high relative velocities, result in blade erosion, which is known as liquid impingement erosion (LIE). Experimental and analytical studies in this field are limited due to the complexity of the droplet impact at such conditions. Hence, numerical analysis is a very powerful and affordable tool to investigate the LIE phenomenon. In this regard, it is crucial to understand the hydrodynamics of the impact in order to identify the consequent solid response before addressing the LIE problem. The numerical study of the droplet impingement provides the transient pressure history generated in the liquid. Determining the transient behavior of the substrate, in response to the pressure force exerted due to the droplet impact, would facilitate engineering new types of surface coatings that are more resistant to LIE. To that end, quantifying the impact pressure of compressible liquid droplets impinged at very high velocities, up to 500 m/s, on rigid solid substrates and liquid films is the main objective of the present work. A wide range of scenarios that commonly arise in the LIE problem are considered, i.e., droplet sizes between 200 µm and 1000 μm, impact velocities ranging from 100 m/s to 500 m/s, and liquid film thicknesses of 0 µm–200 μm. The maximum pressure exerted on the solid surface due to the droplet impact is calculated for both dry and wetted substrates. The results obtained from compressible fluid modeling are compared to those of other numerical studies and analytical correlations, available in the open literature. New correlations are developed for maximum impact pressure on rigid solids and liquid films that can be used to characterize the solid stress and estimate the lifetime of the material by carrying out the fatigue analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奥美拉唑发布了新的文献求助10
1秒前
板栗发布了新的文献求助20
1秒前
我是老大应助淡淡的航空采纳,获得10
2秒前
2秒前
2秒前
山河统一发布了新的文献求助30
2秒前
3秒前
3秒前
弼马温完成签到 ,获得积分10
3秒前
fcdawn完成签到,获得积分10
3秒前
3秒前
ss发布了新的文献求助30
3秒前
蛙蛙完成签到,获得积分0
4秒前
无可匹敌的饭量完成签到,获得积分10
4秒前
上官若男应助小潘采纳,获得10
4秒前
ding应助hlt采纳,获得10
5秒前
5秒前
5秒前
5秒前
6秒前
6秒前
6秒前
前前前世完成签到,获得积分10
6秒前
7秒前
弼马温关注了科研通微信公众号
7秒前
可爱迪发布了新的文献求助10
7秒前
健壮的化蛹应助顺心的骁采纳,获得10
8秒前
小满发布了新的文献求助10
8秒前
ss完成签到 ,获得积分10
8秒前
tt完成签到,获得积分10
9秒前
9秒前
9秒前
fish1998完成签到,获得积分10
9秒前
顾矜应助优雅尔芙采纳,获得10
9秒前
Mr祥发布了新的文献求助10
10秒前
爬不起来发布了新的文献求助10
10秒前
10秒前
11秒前
CCCC完成签到,获得积分20
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776435
求助须知:如何正确求助?哪些是违规求助? 5629479
关于积分的说明 15442901
捐赠科研通 4908608
什么是DOI,文献DOI怎么找? 2641332
邀请新用户注册赠送积分活动 1589287
关于科研通互助平台的介绍 1543910