High-speed droplet impingement on dry and wetted substrates

机械 压缩性 物理 工作(物理) 航空航天工程 机械工程 热力学 工程类
作者
Mason Marzbali,Ali Dolatabadi
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:32 (11) 被引量:33
标识
DOI:10.1063/5.0020977
摘要

High-speed droplet impact is of great interest to power generation and aerospace industries due to the accrued cost of maintenance in steam and gas turbines. The repetitive impacts of liquid droplets onto rotor blades, at high relative velocities, result in blade erosion, which is known as liquid impingement erosion (LIE). Experimental and analytical studies in this field are limited due to the complexity of the droplet impact at such conditions. Hence, numerical analysis is a very powerful and affordable tool to investigate the LIE phenomenon. In this regard, it is crucial to understand the hydrodynamics of the impact in order to identify the consequent solid response before addressing the LIE problem. The numerical study of the droplet impingement provides the transient pressure history generated in the liquid. Determining the transient behavior of the substrate, in response to the pressure force exerted due to the droplet impact, would facilitate engineering new types of surface coatings that are more resistant to LIE. To that end, quantifying the impact pressure of compressible liquid droplets impinged at very high velocities, up to 500 m/s, on rigid solid substrates and liquid films is the main objective of the present work. A wide range of scenarios that commonly arise in the LIE problem are considered, i.e., droplet sizes between 200 µm and 1000 μm, impact velocities ranging from 100 m/s to 500 m/s, and liquid film thicknesses of 0 µm–200 μm. The maximum pressure exerted on the solid surface due to the droplet impact is calculated for both dry and wetted substrates. The results obtained from compressible fluid modeling are compared to those of other numerical studies and analytical correlations, available in the open literature. New correlations are developed for maximum impact pressure on rigid solids and liquid films that can be used to characterize the solid stress and estimate the lifetime of the material by carrying out the fatigue analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ZLL关注了科研通微信公众号
2秒前
专注的绾绾完成签到 ,获得积分10
2秒前
韩soso完成签到,获得积分10
3秒前
可爱中蓝完成签到,获得积分10
3秒前
3秒前
3秒前
张道微发布了新的文献求助10
3秒前
咿呀咿呀哟完成签到,获得积分10
4秒前
bill完成签到,获得积分10
4秒前
xunoverflow完成签到,获得积分10
4秒前
陈哈哈完成签到,获得积分10
4秒前
紧张的谷槐完成签到,获得积分10
4秒前
能干的寒凡完成签到,获得积分10
5秒前
5秒前
彭于晏应助你好采纳,获得10
5秒前
小马的可爱老婆完成签到,获得积分10
6秒前
weita完成签到,获得积分10
6秒前
炖地瓜完成签到 ,获得积分10
6秒前
oikikio完成签到,获得积分10
7秒前
2499297293发布了新的文献求助20
7秒前
biudungdung完成签到,获得积分10
7秒前
三水完成签到,获得积分10
7秒前
可爱中蓝发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
YLC完成签到 ,获得积分10
10秒前
方汀完成签到,获得积分10
10秒前
科研通AI6应助兔子采纳,获得10
11秒前
高高珩完成签到 ,获得积分10
11秒前
体贴西装完成签到 ,获得积分10
11秒前
shbkmy完成签到,获得积分10
11秒前
12秒前
星辰大海应助fjhsg25采纳,获得10
13秒前
水123发布了新的文献求助10
14秒前
14秒前
JiaJia发布了新的文献求助10
14秒前
优雅的皮卡丘完成签到,获得积分10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600283
求助须知:如何正确求助?哪些是违规求助? 4685999
关于积分的说明 14841023
捐赠科研通 4676153
什么是DOI,文献DOI怎么找? 2538671
邀请新用户注册赠送积分活动 1505744
关于科研通互助平台的介绍 1471167