Exploring the utility of EDA and skin temperature as individual physiological correlates of motion sickness

运动病 可靠性(半导体) 模拟 度量(数据仓库) 任务(项目管理) 运动(物理) 计算机科学 心理学 应用心理学 人工智能 工程类 数据挖掘 功率(物理) 物理 系统工程 量子力学 精神科
作者
Joseph Smyth,Stewart Birrell,Roger Woodman,Paul Jennings
出处
期刊:Applied Ergonomics [Elsevier]
卷期号:92: 103315-103315 被引量:32
标识
DOI:10.1016/j.apergo.2020.103315
摘要

Motion sickness (MS) is known to be a potentially limiting factor for future self-driving vehicles – specifically in regards to occupant comfort and well-being. With this as a consideration comes the desire to accurately measure, track and even predict MS state in real-time. Previous research has considered physiological measurements to measure MS state, although, this is mainly measured after an MS exposure and not throughout exposure(s) to a MS task. A unique contribution of this paper is in the real-time tracking of subjective MS alongside real-time physiological measurements of Electrodermal Activity (EDA) and skin temperature. Data was collected in both simulator-based (controlled) and on-road (naturalistic) studies. 40 participants provided at total of 61 data sets, providing 1603 min of motion sickness data for analysis. This study is in agreement that these measures are related to MS but evidenced a total lack of reliability for these measures at an individual level for both simulator and on-road experimentation. It is likely that other factors, such as environment and emotional state are more impactful on these physiological measures than MS itself. At a cohort level, the applicability of physiological measures is not considered useful for measuring MS accurately or reliably in real-time. Recommendations for further research include a mixed-measures approach to capture other data types (such as subject activity) and to remove contamination of physiological measures from environmental changes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
馨馨完成签到,获得积分10
刚刚
找寻四氢叶酸完成签到,获得积分10
1秒前
秉文完成签到,获得积分10
3秒前
3秒前
3秒前
Spinnin完成签到,获得积分10
3秒前
灵巧灵松完成签到,获得积分20
4秒前
完美世界应助容荣采纳,获得10
4秒前
shaco发布了新的文献求助10
4秒前
6秒前
077关闭了077文献求助
6秒前
wanhe发布了新的文献求助10
8秒前
科研通AI5应助安详绿草采纳,获得10
9秒前
9秒前
完美世界应助舒服的映安采纳,获得10
10秒前
强健的月饼完成签到,获得积分10
10秒前
11秒前
木木夕发布了新的文献求助10
13秒前
科研通AI2S应助灵巧灵松采纳,获得10
13秒前
晨曦完成签到,获得积分10
13秒前
Ava应助guangshuang采纳,获得10
14秒前
14秒前
丘比特应助牛马采纳,获得10
15秒前
Owen应助陶醉的凡桃采纳,获得10
15秒前
Akim应助胡姐姐采纳,获得10
15秒前
16秒前
16秒前
英俊的铭应助CC采纳,获得10
16秒前
虞yu完成签到,获得积分10
17秒前
蜻蜓队长发布了新的文献求助10
17秒前
我是老大应助海韵_Tony采纳,获得10
17秒前
Dayton发布了新的文献求助10
18秒前
如意向雪发布了新的文献求助10
19秒前
19秒前
21秒前
星辰大海应助农夫水泉采纳,获得10
23秒前
25秒前
外向翠萱完成签到,获得积分20
25秒前
FartKing发布了新的文献求助10
26秒前
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3524932
求助须知:如何正确求助?哪些是违规求助? 3105740
关于积分的说明 9276012
捐赠科研通 2803027
什么是DOI,文献DOI怎么找? 1538292
邀请新用户注册赠送积分活动 716162
科研通“疑难数据库(出版商)”最低求助积分说明 709278