Optimizing the electrochemical performance of Li2MnO3 cathode materials for Li-ion battery using solution combustion synthesis: Higher temperature and longer syntheses improves performance

材料科学 结晶度 电化学 化学工程 燃烧 退火(玻璃) 阴极 微观结构 烧结 冶金 复合材料 电极 化学 物理化学 工程类
作者
C. O. Ehi‐Eromosele,Samuel O. Ajayi,Chizoom N. Onwucha
出处
期刊:Journal of Alloys and Compounds [Elsevier]
卷期号:861: 157972-157972 被引量:10
标识
DOI:10.1016/j.jallcom.2020.157972
摘要

Li2MnO3 is the parent compound and a component of the well-studied Li-rich Mn-based layered materials (xLi2MnO3·(1−x)LiMO2) for high capacity Li-ion batteries. Different combinations of citric acid fuel and metal nitrates (C/N) were used to optimize the electrochemical performance of Li2MnO3 nanoparticles by the solution combustion synthesis. Thermodynamic modelling and thermogravimmetric analysis show that the variations of C/N molar ratio affected the combustion process and the Li2MnO3 powder characteristics such as morphology and crystallinity. The fuel-rich composition (C/N = 0.555) with the highest adiabatic flame temperature produced Li2MnO3 cathode materials with the best electrochemical performance. The influence of sintering temperature on the crystallinity of the Li2MnO3 sample was investigated with high-temperature synchrotron XRD. The Li2MnO3 synthesized at a lower temperature (400 °C) had a better initial discharge capacity than the one synthesized at a much higher temperature (800 °C) however, it showed far poorer cycling stability. These differences in their electrochemical performance were explained on the basis of their microstructure and morphology. Furthermore, increasing annealing time at 800 °C (from 2 to 20 h) achieved phase pure materials and improved the electrochemical performance of Li2MnO3 powders. This improvement was due to the well defined, developed and larger particles of the samples annealed at longer times. The results show that apart from increasing synthesis temperature, varying annealing times at optimum temperature could be used to improve the functional performance of ceramic oxides.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玩命做科研完成签到,获得积分10
刚刚
1秒前
1秒前
科学家发布了新的文献求助10
1秒前
1秒前
1秒前
zx发布了新的文献求助10
1秒前
都是发布了新的文献求助30
2秒前
Amy发布了新的文献求助10
2秒前
杨无敌1997完成签到,获得积分20
2秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
今后应助Felix采纳,获得10
3秒前
3秒前
3秒前
Owen应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
IBMffff应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
嘟嘟嘟完成签到,获得积分20
3秒前
今后应助科研通管家采纳,获得10
3秒前
梁婷完成签到,获得积分20
3秒前
4秒前
十三完成签到,获得积分10
4秒前
大皿同学完成签到,获得积分10
4秒前
jxp发布了新的文献求助30
4秒前
WWW完成签到,获得积分10
5秒前
那个男人发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
可爱的函函应助853225598采纳,获得10
6秒前
6秒前
梁婷发布了新的文献求助10
6秒前
汉堡包应助gyf采纳,获得10
6秒前
薰硝壤应助白七为皂采纳,获得50
6秒前
11完成签到,获得积分10
6秒前
稳重的峻熙完成签到 ,获得积分10
7秒前
好纠结发布了新的文献求助10
7秒前
林lin发布了新的文献求助10
7秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148940
求助须知:如何正确求助?哪些是违规求助? 2800005
关于积分的说明 7837927
捐赠科研通 2457512
什么是DOI,文献DOI怎么找? 1307891
科研通“疑难数据库(出版商)”最低求助积分说明 628322
版权声明 601685