Optimizing the electrochemical performance of Li2MnO3 cathode materials for Li-ion battery using solution combustion synthesis: Higher temperature and longer syntheses improves performance

材料科学 结晶度 电化学 化学工程 燃烧 退火(玻璃) 阴极 微观结构 烧结 冶金 复合材料 电极 化学 物理化学 工程类
作者
C. O. Ehi‐Eromosele,Samuel O. Ajayi,Chizoom N. Onwucha
出处
期刊:Journal of Alloys and Compounds [Elsevier]
卷期号:861: 157972-157972 被引量:13
标识
DOI:10.1016/j.jallcom.2020.157972
摘要

Li2MnO3 is the parent compound and a component of the well-studied Li-rich Mn-based layered materials (xLi2MnO3·(1−x)LiMO2) for high capacity Li-ion batteries. Different combinations of citric acid fuel and metal nitrates (C/N) were used to optimize the electrochemical performance of Li2MnO3 nanoparticles by the solution combustion synthesis. Thermodynamic modelling and thermogravimmetric analysis show that the variations of C/N molar ratio affected the combustion process and the Li2MnO3 powder characteristics such as morphology and crystallinity. The fuel-rich composition (C/N = 0.555) with the highest adiabatic flame temperature produced Li2MnO3 cathode materials with the best electrochemical performance. The influence of sintering temperature on the crystallinity of the Li2MnO3 sample was investigated with high-temperature synchrotron XRD. The Li2MnO3 synthesized at a lower temperature (400 °C) had a better initial discharge capacity than the one synthesized at a much higher temperature (800 °C) however, it showed far poorer cycling stability. These differences in their electrochemical performance were explained on the basis of their microstructure and morphology. Furthermore, increasing annealing time at 800 °C (from 2 to 20 h) achieved phase pure materials and improved the electrochemical performance of Li2MnO3 powders. This improvement was due to the well defined, developed and larger particles of the samples annealed at longer times. The results show that apart from increasing synthesis temperature, varying annealing times at optimum temperature could be used to improve the functional performance of ceramic oxides.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ballball233发布了新的文献求助10
刚刚
汉堡包应助CEJ采纳,获得10
2秒前
2秒前
彭于晏应助周至采纳,获得30
2秒前
Rimbaud完成签到 ,获得积分10
2秒前
Sansan.发布了新的文献求助10
3秒前
猫尔儿完成签到,获得积分10
4秒前
4秒前
111完成签到,获得积分10
4秒前
红尘完成签到,获得积分10
4秒前
5秒前
6秒前
晶莹黎完成签到,获得积分10
7秒前
郭亮发布了新的文献求助20
7秒前
zhang完成签到 ,获得积分10
8秒前
yao完成签到,获得积分20
8秒前
憨憨且老刘完成签到,获得积分10
9秒前
Sansan.完成签到,获得积分10
9秒前
陈美宏发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
陈jiajia发布了新的文献求助10
11秒前
solo4bird完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
14秒前
奶茶完成签到,获得积分10
15秒前
粗暴的醉卉完成签到 ,获得积分10
15秒前
小二郎应助OPV采纳,获得10
15秒前
16秒前
16秒前
可乐完成签到 ,获得积分10
16秒前
17秒前
leeSongha完成签到 ,获得积分10
17秒前
18秒前
LEle发布了新的文献求助10
18秒前
情怀应助科研小白采纳,获得10
19秒前
20秒前
Jack祺完成签到 ,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735045
求助须知:如何正确求助?哪些是违规求助? 5358060
关于积分的说明 15328419
捐赠科研通 4879484
什么是DOI,文献DOI怎么找? 2621957
邀请新用户注册赠送积分活动 1571152
关于科研通互助平台的介绍 1527932