Optimizing the Chinese Electricity Mix for CO2 Emission Reduction: An Input–Output Linear Programming Model with Endogenous Capital

温室气体 发电 自然资源经济学 环境科学 二氧化碳 环境经济学 首都(建筑) 资本成本 经济 环境工程 废物管理 工程类 化学 功率(物理) 宏观经济学 历史 生态学 物理 有机化学 考古 量子力学 电气工程 生物
作者
Joonho Kang,Tsan Sheng Ng,Bin Su,Rong Yuan
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:54 (2): 697-706 被引量:31
标识
DOI:10.1021/acs.est.9b05199
摘要

This study develops an input-output linear programming (IO-LP) model to identify a cost-effective strategy to reduce the economy-wide carbon dioxide (CO2) emissions in China from 2020 to 2050 through a shift in the electricity generation mix. In particular, the fixed capital formation of electricity technologies (FCFE) is endogenized so that the capital-related CO2 emissions of various generation technologies can be captured in the model. The modeling results show that low-carbon electricity, e.g., hydro, nuclear, wind, and solar, is associated with lower operation-related CO2 emissions but higher capital-related CO2 emissions compared to coal-fired electricity. A scenario analysis further reveals that a shift in the electricity generation mix could reduce the accumulated economy-wide CO2 emissions in China by 20% compared to the business-as-usual (BAU) level and could help peak China's CO2 emissions by 2030. The emission reduction is mainly due to a drop in operation-related CO2 emissions of electricity, contributing to a decrease in accumulated economy-wide emissions by 21.4%. The infrastructure expansion of electricity, on the other hand, causes a rise in the accumulated emissions by 1.4%. The proposed model serves as an effective tool to identify the optimal technology choice in the electricity system with the consideration of both direct and indirect CO2 emissions in the economy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助PSL采纳,获得10
刚刚
2秒前
钱宇成发布了新的文献求助10
2秒前
星辰大海应助吴所谓采纳,获得50
2秒前
科研通AI2S应助感动黄豆采纳,获得10
4秒前
qqq完成签到,获得积分10
4秒前
gewenxue发布了新的文献求助10
5秒前
7秒前
共享精神应助猪猪hero采纳,获得10
7秒前
8秒前
8秒前
Sunrise发布了新的文献求助10
9秒前
PSL完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
liuyf完成签到 ,获得积分10
11秒前
13秒前
13秒前
YJ888发布了新的文献求助10
13秒前
今后应助Lu采纳,获得10
13秒前
EED发布了新的文献求助10
13秒前
88C真是太神奇啦完成签到,获得积分10
14秒前
14秒前
Rondab应助shuyi采纳,获得30
15秒前
酷酷飞烟发布了新的文献求助10
16秒前
17秒前
在水一方应助故意的靳采纳,获得50
18秒前
20秒前
忧郁的鱿鱼完成签到,获得积分10
20秒前
JamesPei应助lm采纳,获得10
22秒前
xww完成签到,获得积分10
22秒前
隐形曼青应助忐忑的阑香采纳,获得10
23秒前
秋半梦发布了新的文献求助10
24秒前
slp完成签到,获得积分20
31秒前
秋半梦完成签到,获得积分10
34秒前
bububusbu完成签到,获得积分10
34秒前
量子星尘发布了新的文献求助10
35秒前
我是老大应助TTm采纳,获得20
36秒前
科研通AI5应助Bressanone采纳,获得10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989115
求助须知:如何正确求助?哪些是违规求助? 3531367
关于积分的说明 11253688
捐赠科研通 3269986
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882078
科研通“疑难数据库(出版商)”最低求助积分说明 809105