赫克反应
化学
电泳剂
烷基
分子内力
有机化学
催化作用
药物化学
芳基
作者
Lili Shi,Junkai Fu,Shuangqiu Gao,Le Chang,Binglin Wang
出处
期刊:Synthesis
[Georg Thieme Verlag KG]
日期:2020-11-10
卷期号:53 (05): 861-878
被引量:27
标识
DOI:10.1055/s-0040-1705966
摘要
Abstract The Mizoroki–Heck reaction is considered as one of the most ingenious and widely used methods for constructing C–C bonds. This reaction mainly focuses on activated olefins (styrenes, acrylates, or vinyl ethers) and aryl/vinyl (pseudo) halides. In comparison, the studies on unactivated alkenes and alkyl electrophiles are far less due to the low reactivity, poor selectivity, as well as competitive β-H elimination. In the past years, a growing interest has thus been devoted and significant breakthroughs have been achieved in the employment of unactivated alkenes and alkyl electrophiles as the reaction components, and this type of coupling is called as Heck-type or Heck-like reaction, which distinguishes from the traditional Heck reaction. Herein, we give a brief summary on Heck-type reaction between unactivated alkenes and alkyl electrophlies, covering its initial work, recent advancements, and mechanistic discussions. 1 Introduction 2 Intramolecular Heck-Type Reaction of Unactivated Alkenes and Alkyl Electrophiles 2.1 Cobalt-Catalyzed Intramolecular Heck-Type Reaction 2.2 Palladium-Catalyzed Intramolecular Heck-Type Reaction 2.3 Nickel-Catalyzed Intramolecular Heck-Type Reaction 2.4 Photocatalysis and Multimetallic Protocol for Intramolecular Heck-Type Reaction 3 Intermolecular Heck-Type Reaction of Unactivated Alkenes and Alkyl Electrophiles 3.1 Electrophilic Trifluoromethylating Reagent as Reaction Partners 3.2 Alkyl Electrophiles as Reaction Partners 4 Oxidative Heck-Type Reaction of Unactivated Alkenes and Alkyl Radicals 5 Conclusions and Outlook
科研通智能强力驱动
Strongly Powered by AbleSci AI