An efficient Kriging based method for time-dependent reliability based robust design optimization via evolutionary algorithm

稳健性(进化) 克里金 概率逻辑 数学优化 进化算法 可靠性(半导体) 计算机科学 替代模型 区间(图论) 最优化问题 工程设计过程 概率设计 算法 可靠性工程 数学 工程类 机器学习 人工智能 物理 组合数学 基因 机械工程 功率(物理) 化学 量子力学 生物化学
作者
Zafar Tayyab,Yanwei Zhang,Zhonglai Wang
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:372: 113386-113386 被引量:62
标识
DOI:10.1016/j.cma.2020.113386
摘要

Uncertainty inadvertently exists in various stages of engineering system design, development, and operating conditions. During the system design and development stages, a design engineer encounters the reliability and robustness measures of a dynamic uncertain system. Due to the existence of dynamic uncertainties, incorporating the time-dependent reliability of an engineering system in reliability based robust design optimization (RBRDO) is crucial. However, the time-dependent and highly non-linear performance functions present a new challenge to the RBRDO problem. This paper presents a multiobjective integrated framework and corresponding algorithms to handle a time-dependent RBRDO problem. The mean and coefficient of variation of the cost function are taken as a multiobjective problem that needs to be optimized to maximize the robustness without destabilizing the system performance. An evolutionary algorithm is employed to find the optimal design points. The performance functions used to estimate the time-dependent reliability are taken as dynamic probabilistic constraints. The dynamic probabilistic constraints are then converted into deterministic constraints by predicting the corresponding time-dependent reliability. A transfer learning based method integrated with the Kriging surrogate models is proposed to predict the time-dependent reliability for a given time interval. Various examples are used to demonstrate the effectiveness of the proposed approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
田様应助干冷安采纳,获得30
2秒前
4秒前
那晚的风发布了新的文献求助10
4秒前
ding应助hangOn采纳,获得10
5秒前
xyz完成签到,获得积分10
7秒前
sfliufighting发布了新的文献求助10
7秒前
Devastating发布了新的文献求助10
7秒前
8秒前
9秒前
13秒前
15秒前
千寻发布了新的文献求助10
15秒前
超越完成签到,获得积分10
19秒前
科研通AI2S应助sfliufighting采纳,获得10
21秒前
Devastating完成签到,获得积分10
23秒前
wlj完成签到 ,获得积分10
27秒前
琼流星海完成签到 ,获得积分10
27秒前
爱蹦跶的废物完成签到,获得积分20
30秒前
纳米发布了新的文献求助10
32秒前
sfliufighting完成签到,获得积分20
36秒前
orixero应助keyanxiaobaishu采纳,获得10
37秒前
38秒前
40秒前
无花果应助Jere采纳,获得20
40秒前
和谐的鹤轩完成签到 ,获得积分10
41秒前
42秒前
43秒前
浮游应助EASA采纳,获得10
44秒前
zyf完成签到,获得积分10
45秒前
45秒前
李爱国应助纳米采纳,获得30
45秒前
lvbowen发布了新的文献求助10
45秒前
Nuyoah应助科研通管家采纳,获得10
45秒前
浮游应助科研通管家采纳,获得10
46秒前
ding应助科研通管家采纳,获得10
46秒前
浮游应助科研通管家采纳,获得10
46秒前
Mic应助科研通管家采纳,获得10
46秒前
领导范儿应助科研通管家采纳,获得10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557634
求助须知:如何正确求助?哪些是违规求助? 4642696
关于积分的说明 14668874
捐赠科研通 4584158
什么是DOI,文献DOI怎么找? 2514615
邀请新用户注册赠送积分活动 1488842
关于科研通互助平台的介绍 1459533