Investigating the biological relevance in trained embedding representations of protein sequences

二元曲线 计算机科学 人工智能 编码(内存) 注释 序列(生物学) 相关性(法律) 嵌入 机器学习 代表(政治) 编码 自然语言处理 基因 生物 遗传学 三元曲线 政治 政治学 法学
作者
Jasper Zuallaert,Xiaoyong Pan,Yvan Saeys,Xi Wang,Wesley De Neve
出处
期刊:International Conference on Machine Learning
链接
摘要

As genome sequencing is becoming faster and cheaper, an abundance of DNA and protein sequence data is available. However, experimental annotation of structural or functional information develops at a much slower pace. Therefore, machine learning techniques have been widely adopted to make accurate predictions on unseen sequence data. In recent years, deep learning has been gaining popularity, as it allows for effective end-to-end learning. One consideration for its application on sequence data is the choice for a suitable and effective sequence representation strategy. In this paper, we investigate the significance of three common encoding schemes on the multi-label prediction problem of Gene Ontology (GO) term annotation, namely a one-hot encoding, an ad-hoc trainable embedding, and pre-trained protein vectors, using different hyper-parameters. We found that traditional unigram one-hot encodings achieved very good results, only slightly outperformed by unigram ad-hoc trainable embeddings and bigram pre-trained embeddings (by at most 3%for the F maxscore), suggesting the exploration of different encoding strategies to be potentially beneficial. Most interestingly, when analyzing and visualizing the trained embeddings, we found that biologically relevant (dis)similarities between amino acid n-grams were implicitly learned, which were consistent with their physiochemical properties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
小脚丫完成签到,获得积分10
1秒前
dyk完成签到,获得积分10
1秒前
1秒前
赘婿应助火星上夜云采纳,获得10
2秒前
2秒前
tata1945发布了新的文献求助10
3秒前
搬砖的冰美式完成签到,获得积分10
3秒前
chen发布了新的文献求助10
3秒前
健忘捕完成签到 ,获得积分10
4秒前
不机智的大鹅完成签到 ,获得积分10
4秒前
4秒前
Niu发布了新的文献求助10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
5秒前
jojo应助科研通管家采纳,获得10
6秒前
ZM发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
6秒前
无花果应助科研通管家采纳,获得10
6秒前
6秒前
Ava应助不打地洞的土拨鼠采纳,获得10
6秒前
nuaa_shy应助科研通管家采纳,获得10
6秒前
jwx应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
渐变映射发布了新的文献求助10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
科研通AI6.1应助嘉人采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
jojo应助科研通管家采纳,获得10
7秒前
y741应助科研通管家采纳,获得10
7秒前
7秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5783962
求助须知:如何正确求助?哪些是违规求助? 5680156
关于积分的说明 15462775
捐赠科研通 4913312
什么是DOI,文献DOI怎么找? 2644592
邀请新用户注册赠送积分活动 1592399
关于科研通互助平台的介绍 1547026