Investigating the biological relevance in trained embedding representations of protein sequences

二元曲线 计算机科学 人工智能 编码(内存) 注释 序列(生物学) 相关性(法律) 嵌入 机器学习 代表(政治) 编码 自然语言处理 基因 生物 遗传学 三元曲线 政治 政治学 法学
作者
Jasper Zuallaert,Xiaoyong Pan,Yvan Saeys,Xi Wang,Wesley De Neve
出处
期刊:International Conference on Machine Learning
链接
摘要

As genome sequencing is becoming faster and cheaper, an abundance of DNA and protein sequence data is available. However, experimental annotation of structural or functional information develops at a much slower pace. Therefore, machine learning techniques have been widely adopted to make accurate predictions on unseen sequence data. In recent years, deep learning has been gaining popularity, as it allows for effective end-to-end learning. One consideration for its application on sequence data is the choice for a suitable and effective sequence representation strategy. In this paper, we investigate the significance of three common encoding schemes on the multi-label prediction problem of Gene Ontology (GO) term annotation, namely a one-hot encoding, an ad-hoc trainable embedding, and pre-trained protein vectors, using different hyper-parameters. We found that traditional unigram one-hot encodings achieved very good results, only slightly outperformed by unigram ad-hoc trainable embeddings and bigram pre-trained embeddings (by at most 3%for the F maxscore), suggesting the exploration of different encoding strategies to be potentially beneficial. Most interestingly, when analyzing and visualizing the trained embeddings, we found that biologically relevant (dis)similarities between amino acid n-grams were implicitly learned, which were consistent with their physiochemical properties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助echo采纳,获得10
刚刚
六号线完成签到,获得积分10
刚刚
小蘑菇应助温婉的念文采纳,获得10
刚刚
NexusExplorer应助潮汐采纳,获得10
刚刚
xi发布了新的文献求助10
刚刚
1秒前
柚子完成签到,获得积分10
1秒前
是阿刁完成签到,获得积分10
1秒前
Lightdream__完成签到,获得积分10
1秒前
1秒前
小筱发布了新的文献求助10
2秒前
2秒前
ly完成签到,获得积分20
2秒前
空古悠浪发布了新的文献求助10
2秒前
无花果应助penguinli采纳,获得10
2秒前
sivan发布了新的文献求助10
2秒前
king完成签到,获得积分10
3秒前
TristanGuan发布了新的文献求助10
3秒前
3秒前
打打应助李端端采纳,获得10
3秒前
wanci应助铃儿响叮党采纳,获得10
4秒前
BowieHuang应助inininch采纳,获得50
5秒前
充电宝应助一口一个汤包采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
Liandong应助li采纳,获得10
5秒前
big龙发布了新的文献求助10
6秒前
6秒前
Lucas应助研友_ZrBNxZ采纳,获得30
6秒前
Tici完成签到,获得积分10
6秒前
墨染完成签到 ,获得积分10
7秒前
dahua完成签到,获得积分10
7秒前
无花果应助zss采纳,获得10
7秒前
7秒前
king发布了新的文献求助10
7秒前
7秒前
体贴凌柏发布了新的文献求助10
7秒前
7秒前
BowieHuang应助15095999693采纳,获得10
8秒前
上官若男应助感动帅哥采纳,获得30
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711035
求助须知:如何正确求助?哪些是违规求助? 5202070
关于积分的说明 15263091
捐赠科研通 4863454
什么是DOI,文献DOI怎么找? 2610771
邀请新用户注册赠送积分活动 1561017
关于科研通互助平台的介绍 1518534