Investigating the biological relevance in trained embedding representations of protein sequences

二元曲线 计算机科学 人工智能 编码(内存) 注释 序列(生物学) 相关性(法律) 嵌入 机器学习 代表(政治) 编码 自然语言处理 基因 生物 遗传学 三元曲线 政治 政治学 法学
作者
Jasper Zuallaert,Xiaoyong Pan,Yvan Saeys,Xi Wang,Wesley De Neve
出处
期刊:International Conference on Machine Learning
链接
摘要

As genome sequencing is becoming faster and cheaper, an abundance of DNA and protein sequence data is available. However, experimental annotation of structural or functional information develops at a much slower pace. Therefore, machine learning techniques have been widely adopted to make accurate predictions on unseen sequence data. In recent years, deep learning has been gaining popularity, as it allows for effective end-to-end learning. One consideration for its application on sequence data is the choice for a suitable and effective sequence representation strategy. In this paper, we investigate the significance of three common encoding schemes on the multi-label prediction problem of Gene Ontology (GO) term annotation, namely a one-hot encoding, an ad-hoc trainable embedding, and pre-trained protein vectors, using different hyper-parameters. We found that traditional unigram one-hot encodings achieved very good results, only slightly outperformed by unigram ad-hoc trainable embeddings and bigram pre-trained embeddings (by at most 3%for the F maxscore), suggesting the exploration of different encoding strategies to be potentially beneficial. Most interestingly, when analyzing and visualizing the trained embeddings, we found that biologically relevant (dis)similarities between amino acid n-grams were implicitly learned, which were consistent with their physiochemical properties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助小嚣张采纳,获得10
1秒前
Ava应助粗犷的书包采纳,获得10
1秒前
梦红尘发布了新的文献求助10
1秒前
背后雪枫完成签到,获得积分10
1秒前
2秒前
Jasper应助自觉寒梦采纳,获得10
3秒前
Cherry完成签到 ,获得积分10
3秒前
zho发布了新的文献求助10
3秒前
XinSha完成签到,获得积分20
4秒前
5秒前
韩俊峰完成签到,获得积分10
5秒前
面包超人关注了科研通微信公众号
5秒前
6秒前
李李发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
YKH完成签到,获得积分20
7秒前
可爱的函函应助淡定可乐采纳,获得10
9秒前
10秒前
silong发布了新的文献求助10
10秒前
zbszd完成签到,获得积分10
10秒前
现代的雁枫完成签到,获得积分10
11秒前
source发布了新的文献求助10
11秒前
ZelongWang完成签到,获得积分20
12秒前
九月亦星发布了新的文献求助10
12秒前
刘芸若诗发布了新的文献求助10
12秒前
科研通AI6应助不知道叫哈采纳,获得10
12秒前
swq发布了新的文献求助10
12秒前
13秒前
蓝朱发布了新的文献求助10
14秒前
英姑应助邵洋采纳,获得10
14秒前
搜集达人应助tigger采纳,获得10
14秒前
15秒前
小马甲应助zbszd采纳,获得10
15秒前
16秒前
16秒前
16秒前
17秒前
沉静傥完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577176
求助须知:如何正确求助?哪些是违规求助? 4662454
关于积分的说明 14741703
捐赠科研通 4603093
什么是DOI,文献DOI怎么找? 2526103
邀请新用户注册赠送积分活动 1495999
关于科研通互助平台的介绍 1465483