Investigating the biological relevance in trained embedding representations of protein sequences

二元曲线 计算机科学 人工智能 编码(内存) 注释 序列(生物学) 相关性(法律) 嵌入 机器学习 代表(政治) 编码 自然语言处理 基因 生物 遗传学 三元曲线 政治 政治学 法学
作者
Jasper Zuallaert,Xiaoyong Pan,Yvan Saeys,Xi Wang,Wesley De Neve
出处
期刊:International Conference on Machine Learning
链接
摘要

As genome sequencing is becoming faster and cheaper, an abundance of DNA and protein sequence data is available. However, experimental annotation of structural or functional information develops at a much slower pace. Therefore, machine learning techniques have been widely adopted to make accurate predictions on unseen sequence data. In recent years, deep learning has been gaining popularity, as it allows for effective end-to-end learning. One consideration for its application on sequence data is the choice for a suitable and effective sequence representation strategy. In this paper, we investigate the significance of three common encoding schemes on the multi-label prediction problem of Gene Ontology (GO) term annotation, namely a one-hot encoding, an ad-hoc trainable embedding, and pre-trained protein vectors, using different hyper-parameters. We found that traditional unigram one-hot encodings achieved very good results, only slightly outperformed by unigram ad-hoc trainable embeddings and bigram pre-trained embeddings (by at most 3%for the F maxscore), suggesting the exploration of different encoding strategies to be potentially beneficial. Most interestingly, when analyzing and visualizing the trained embeddings, we found that biologically relevant (dis)similarities between amino acid n-grams were implicitly learned, which were consistent with their physiochemical properties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玄一发布了新的文献求助10
刚刚
眯眯眼的忆山完成签到,获得积分20
2秒前
FashionBoy应助dw1234采纳,获得10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
manjusaka发布了新的文献求助10
3秒前
黑熊精发布了新的文献求助10
4秒前
DK完成签到,获得积分10
4秒前
langwang完成签到,获得积分0
4秒前
鲨鱼发布了新的文献求助10
4秒前
完美世界应助Rui采纳,获得10
5秒前
6秒前
科研通AI6应助读书的时候采纳,获得10
6秒前
南湖完成签到 ,获得积分10
6秒前
7秒前
7秒前
Akim应助Z丶采纳,获得10
8秒前
8秒前
等待凡英发布了新的文献求助30
10秒前
爆米花应助平淡面包采纳,获得30
11秒前
12345发布了新的文献求助10
12秒前
脑洞疼应助青栞采纳,获得10
12秒前
无极微光应助不会取名字采纳,获得20
12秒前
小蘑菇应助slp123456采纳,获得10
13秒前
彭于晏应助恩恩天天开心采纳,获得10
13秒前
机灵采萱完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
脚踏实地完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
wenwenwang完成签到 ,获得积分10
17秒前
Jasper应助HH采纳,获得10
18秒前
18秒前
焦慧骁完成签到,获得积分20
18秒前
daqisong发布了新的文献求助10
19秒前
infognet发布了新的文献求助10
19秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720392
求助须知:如何正确求助?哪些是违规求助? 5259964
关于积分的说明 15291027
捐赠科研通 4869813
什么是DOI,文献DOI怎么找? 2615036
邀请新用户注册赠送积分活动 1565022
关于科研通互助平台的介绍 1522160