亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Assembly of Iron Oxide Nanocrystal Superstructures

材料科学 纳米晶 纳米技术 氧化物 氧化铁 冶金
作者
Indira Chaitanya Lekshmi,Concetta Nobile,Ross Rinaldi,P. Davide Cozzoli,Giuseppe Maruccio
出处
期刊:Science of Advanced Materials [American Scientific Publishers]
卷期号:5 (12): 2015-2020 被引量:1
标识
DOI:10.1166/sam.2013.1702
摘要

Self-organization of colloidal magnetic nanocrystals (NCs) into ordered superstructures is of significant interest as an opportunity for the controlled design and fabrication of mesoscopic magnetic materials that could find use in magnetic data storage, sensors and biomedicine. For example, an assembly of monodisperse magnetic NCs with controlled interparticle spacing can allow a fine tuning of spindependent transport which is particularly important when single electron tunneling (SET) and spin-dependent transport (SDT) are targeted in nano-sized devices [1, 2]. Using ad-hoc self-assembly procedures, highly ordered supercrystal structures have been prepared in recent years, with interesting collective magnetic properties that are different from those exhibited by their isolated NC building blocks, corresponding disordered ensembles or their bulk materials counterpart. In large superstructures of colloidal iron oxide NCs, the interplay of magnetic dipole-dipole interactions with the NC magnetocrystalline anisotropy can lead to enhanced saturation magnetization and coercivity, while dilute assemblies exhibit superparamagnetic behaviour [3, 4]. Collective magnetic properties are indeed extremely sensitive to mutual interactions among NCs, depending on the superlattice structure and interparticle spacing. This calls for efficient design of NC arrays with different dimensions for integration into functional device structures. Here, we report on the magnetic fieldassisted assembly of iron oxide NCs with inverse spinel cubic structure of mixed-phase halfmetallic magnetite (Fe3O4) /insulating maghemite (γ-Fe2O3) [5]. Self-assembly was carried out by subjecting toluene solutions of purified NCs to slow solvent evaporation in a quasi toluene-vapour-saturated ambient. A perpendicular to plane magnetic field (0.5 T) was applied to facilitate growth of superlattices. Two common procedures were employed for NC self-assembly, namely dip coating and drop casting. In the former approach, a substrate was dipped into a NC solution with a permanent magnet positioned below and kept there over a period of 3 days maintaining a saturated toluene vapour ambience. Then the substrate was extracted, washed and dried. In the drop-casting method, few drops of NC solution were placed over the substrate and the solvent was allowed to slowly evaporate. NC concentrations were varied in the range of 0.3-7 μM. Self-assembly was investigated on two kinds of surfaces: (100 nm thick) Au and (3nm/100nm) SiO2/Au, prepared on SiO2/Si substrates using thermal evaporation and electron beam techniques. The template surfaces were also modified with organic ligands to evaluate the effect of NC-substrate interactions on the selfassembly. The superlattices could be tailored in a versatile way, from thin films up to macroscopic supercrystals in the millimeter range, by acting on NC solution concentration and the mode of casting. Although NC self-assembly into superlattices is largely entropically driven, beyond crystal size distribution and NC density, ordering is also governed by NC-NC and NCsubstrate interactions, and the presence of external forces. Interparticle interactions may include van der Waals attraction, steric repulsion, dipole-dipole interactions and Coulomb interactions between charged ligands. Changing these interactions can significantly modify the self-assembly process. In particular, the organic ligands passivating the NC surface or the specific substrate chemistry were found to change the extent of the mutual interactions between neighbouring particles as well as the strength of NC adhesion on the substrate, thereby modifying the surface mobility which plays a critical role [5].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助歪歪吸采纳,获得10
6秒前
青树柠檬完成签到 ,获得积分10
14秒前
歪歪吸完成签到,获得积分20
16秒前
17秒前
歪歪吸发布了新的文献求助10
21秒前
28秒前
完美世界应助m侯采纳,获得10
34秒前
桐桐应助我要帅个够采纳,获得10
37秒前
41秒前
m侯完成签到,获得积分10
43秒前
Juan_He完成签到,获得积分10
45秒前
m侯发布了新的文献求助10
46秒前
树枝完成签到,获得积分20
57秒前
氯丙嗪完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
隐形的皮卡丘完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
加菲丰丰举报阿纳求助涉嫌违规
1分钟前
1分钟前
briliian完成签到,获得积分20
1分钟前
briliian发布了新的文献求助30
1分钟前
cheunsor完成签到,获得积分10
1分钟前
DagrZheng完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
mito完成签到,获得积分10
1分钟前
NexusExplorer应助呆萌沛蓝采纳,获得10
2分钟前
慈祥的如波完成签到,获得积分20
2分钟前
zzdm发布了新的文献求助10
2分钟前
2分钟前
GONGLI完成签到 ,获得积分10
2分钟前
zzdm完成签到,获得积分10
2分钟前
zhxi发布了新的文献求助10
2分钟前
赵振辉发布了新的文献求助10
2分钟前
爆米花应助忍蛙采纳,获得10
2分钟前
QR完成签到 ,获得积分10
2分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Field Guide to Insects of South Africa 660
Mantodea of the World: Species Catalog 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3397875
求助须知:如何正确求助?哪些是违规求助? 3006913
关于积分的说明 8823375
捐赠科研通 2694219
什么是DOI,文献DOI怎么找? 1475721
科研通“疑难数据库(出版商)”最低求助积分说明 682508
邀请新用户注册赠送积分活动 675940