The aim of this study was to establish a rapid atrial pacing-induced canine model of atrial fibrillation in studying the effects of low-level vagus nerve stimulation (LLVNS) on atrial fibrillation and the underlying mechanisms for those effects. Adult beagle dogs were randomly assigned to 3 groups: a sham operation group (sham group), a fast left atrial appendage 12-hour pacing group (pacing group), and a 12-hour pacing + LLVNS group (LLVNS group). All dogs underwent tests for their left and right atrial effective refractory period at various time points, after which they were killed, and samples of atrial and anterior right ganglionated plexi tissue were removed and microscopically examined. As pacing times increased, the mean effective refractory period in the pacing group became significantly shortened. The pacing group and the LLVNS group did show significant differences (P < 0.001). Three groups showed significant differences in their atrial myocardial periodic acid-Schiff-positive area staining densities. Anterior right ganglionated plexi expressions of nerve growth factor and neurturin (NRTN) in the sham group and the LLVNS group were lower than those in the pacing group (nerve growth factor in 3 groups were (36.35 ± 6.18) × 1000, (86.35 ± 5.63) × 1000, and (40.50 ± 7.24) × 1000 μm²/mm², P < 0.001; NRTN in 3 groups were (39.28 ± 7.80) × 1000, (80.24 ± 6.56) × 1000, (40.45 ± 6.97) × 1000 μm²/mm², P < 0.001). Therefore, LLVNS not only reverses the effect of fast pacing-induced atrial electrical remodeling in dogs but also exerts structural effects and stimulates remodeling of autonomic nerves.