Investigating lava flow rheology using video analysis and numerical flow models

熔岩 地质学 流量(数学) 流变学 熔岩穹隆 测速 机械 火山 材料科学 物理 地震学 复合材料
作者
Einat Lev,Marc Spiegelman,Robert J. Wysocki,J. A. Karson
出处
期刊:Journal of Volcanology and Geothermal Research [Elsevier]
卷期号:247-248: 62-73 被引量:59
标识
DOI:10.1016/j.jvolgeores.2012.08.002
摘要

Lava rheology is a major control on lava flow behavior and a critical parameter in flow simulations, but is very difficult to measure at field conditions or correctly extrapolate from the lab scale. We present a new methodology for investigating lava rheology through a combination of controlled experiments, image analysis and numerical forward modeling. Our experimental setup, part of the Syracuse University Lava Project (http://lavaproject.syr.edu) includes a large furnace capable of melting up to 450 kg of basalt, at temperatures well above the basalt liquidus. The lava is poured onto either a tilted bed of sand or a steel channel to produce meter-long flows. This experimental setup is probably the only facility that allows such large scale controlled lava flows made of natural basaltic material. We document the motion of the lava using a high-resolution video camera placed directly above the flows, and the temperature using infrared probes and cameras. After collecting the footage, we analyze the images for lava deformation and compare with numerical forward-models to constrain the rheological parameters and laws which best describe the flowing lava. For the video analysis, we employ the technique of Differential Optical Flow, which uses the time-variations of the spatial gradients of the image intensity to estimate velocity between consecutive frames. An important benefit for using optical flow, compared with other velocimetry methods, is that it outputs a spatially coherent flow field rather than point measurements. We demonstrate that the optical flow results agree with other measures of the flow velocity, and estimate the error due to noise and time-variability to be under 30% of the measured velocity. Our forward-models are calculated by solving the Stokes flow equations on an unstructured finite-element mesh defined using the geometry of the observed flow itself. We explore a range of rheological parameters, including the lava's apparent viscosity, the power-law exponent m and the thermal activation energy. Our measurements of apparent viscosity agree well with predictions of the composition-based Shaw (1972) and GRD model (Giordano, Russell and Dingwell, 2008). We find that for the high-temperature portion of the flow a weakly shear-thinning or Newtonian rheology (m > 0.7) with an effective activation energy of B = 5500 J gives the best fit to the data. Our methodology is the first time that high-resolution optical flow analysis of flowing lava is combined with numerical flow models to constrain rheology. The methodology we present here can be used in field conditions to obtain in-situ information on lava rheology, without physical interaction with the flow and without being limited to point-wise, low strain-rate, local measurements currently available through the use of rotational viscometers in the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
kmessiy发布了新的文献求助10
1秒前
怕孤单的sky应助神勇的罡采纳,获得20
1秒前
烟柳画桥完成签到,获得积分10
1秒前
1秒前
rayzhanghl完成签到,获得积分10
1秒前
Kyrene发布了新的文献求助10
2秒前
Czh完成签到,获得积分10
2秒前
务实的落雁完成签到,获得积分20
3秒前
spiritpope发布了新的文献求助30
3秒前
3秒前
3秒前
小马甲应助天娟采纳,获得10
3秒前
烟花应助HopeStar采纳,获得10
3秒前
4秒前
陈词滥调完成签到,获得积分10
4秒前
大模型应助hcch采纳,获得10
5秒前
aoao发布了新的文献求助10
5秒前
5秒前
甜蜜阑悦完成签到,获得积分10
5秒前
5秒前
caixiayin给caixiayin的求助进行了留言
5秒前
Lucas应助奔跑吧采纳,获得10
5秒前
Saluzi发布了新的文献求助10
6秒前
6秒前
siusiuyin发布了新的文献求助10
6秒前
李健应助wwh123采纳,获得10
6秒前
7秒前
禾子应助沉默的钻石采纳,获得10
7秒前
7秒前
Shi完成签到,获得积分10
7秒前
7秒前
万能图书馆应助kmessiy采纳,获得10
7秒前
8秒前
wzy完成签到,获得积分20
8秒前
明眸完成签到,获得积分10
8秒前
aby发布了新的文献求助10
8秒前
野原x之助完成签到 ,获得积分10
8秒前
xiuwen完成签到,获得积分10
10秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3473983
求助须知:如何正确求助?哪些是违规求助? 3066333
关于积分的说明 9098686
捐赠科研通 2757569
什么是DOI,文献DOI怎么找? 1513039
邀请新用户注册赠送积分活动 699314
科研通“疑难数据库(出版商)”最低求助积分说明 698909