原子层沉积
塔菲尔方程
催化作用
钼
化学工程
材料科学
吸附
无定形固体
无机化学
电化学
纳米技术
图层(电子)
化学
物理化学
结晶学
电极
有机化学
工程类
作者
Do Hyun Kwon,Zhenyu Jin,Seokhee Shin,Wook‐Seong Lee,Yo‐Sep Min
出处
期刊:Nanoscale
[The Royal Society of Chemistry]
日期:2016-01-01
卷期号:8 (13): 7180-7188
被引量:49
摘要
Atomic layer deposition (ALD) has emerged as an efficient method to design and prepare catalysts with atomic precision. Here, we report a comprehensive study on ALD of molybdenum sulfide (MoSx) for an electrocatalytic hydrogen evolution reaction. By using molybdenum hexacarbonyl and dimethyldisulfide as the precursors of Mo and S, respectively, the MoSx catalysts are grown at 100 °C on porous carbon fiber papers (CFPs). The ALD process results in the growth of particle-like MoSx on the CFP due to the lack of adsorption sites, and its crystallographic structure is a mixture of amorphous and nano-crystalline phases. In order to unveil the intrinsic activity of the ALD-MoSx, the exchange current densities, Tafel slopes, and turnover frequencies of the catalysts grown under various ALD conditions have been investigated by considering the fractional surface coverage of MoSx on the CFP and catalytically-active surface area. In addition, the ALD-MoSx/CFP catalysts exhibit excellent catalytic stability due to the strong adhesion of MoSx on the CFP and the mixed phase.
科研通智能强力驱动
Strongly Powered by AbleSci AI