血清素
单胺氧化酶
色氨酸
化学
单胺氧化酶抑制剂
单胺类神经递质
帕吉林
内分泌学
利血平
内科学
色氨酸羟化酶
5-羟基色氨酸
5-羟色胺受体
苯丙氨酸
羟基化
体内
芳香族L-氨基酸脱羧酶
多巴胺
生物化学
氨基酸
酶
5-羟色胺能
生物
受体
医学
生物技术
作者
B. Kenneth Koe,A. Weissman
出处
期刊:PubMed
日期:1966-12-01
卷期号:154 (3): 499-516
被引量:1754
摘要
p -Chlorophenylalanine has been found to be a potent and selective depletor of brain serotonin (5HT) in mice, rats and dogs. Brain 5-hydroxy-3-indolylacetic acid (5HIAA) content was also depleted by the drug, but catecholamine concentrations were only slightly decreased. Peripheral stores of 5HT were also lowered. In rats, p -chlorophenylalanine reduced the normal increase in brain 5-hydroxyl-3-indolyl compounds following L-tryptophan loading (without apparently affecting tryptophan uptake into brain), completely prevented the increase in brain 5HT accompanying inhibition of monoamine oxidase by pargyline and blocked the increase in brain 5HIAA usually observed after reserpine treatment. p -Chlorophenylalanine slightly diminished the usual increase in brain 5HT in rats following 5-hydroxytryptophan (5HTP) administration, but decreased the rate of disappearance of excess 5HT and antagonized the increase in brain 5HIAA. p -Chlorophenylalanine did not inhibit monoamine oxidase or 5HTP-decarboxylase in vitro and exerted no effect on monoamine oxidase or 5HTP decarboxylase activity of rat tissues in vivo. In contrast, p -chlorophenylalanine inhibited liver tryptophan hydroxylase in vitro and strongly suppressed the tryptophan- and phenylalanine-hydroxylating capabilities of livers of rats treated with it. These results suggest that p -chlorophenylalanine may effect 5HT depletion by inhibiting the biosynthesis of this monoamine, possibly by blocking tryptophan hydroxylation. A blockade of uptake of amino acid precursor might also contribute to the effect of decreasing 5HT biosynthesis. The slow depletion (2-3 days) of brain 5HT induced by p -chlorophenylalanine suggests that an active metabolite might be formed. p -Chlorophenylpyruvic acid exerted essentially the same pharmacologic effects as the amino acid, but it cannot be ascertained at present whether it is the active metabolite because of the interconversion of α-amino acids and α-keto acids in vivo. p -Chlorophenethylamine may be excluded as the metabolite responsible for the action of p -chlorophenylalanine because of the brief duration of the amine in brain and the short lasting, nonselective decrease of both 5HT and norepinephrine produced by the amine. A study of structural variation in the phenylalanine series indicated a specific requirement of a single chlorine substituent in the para position for potent in vivo activity. Rats treated with p -chlorophenylalanine displayed few apparent signs, and certainly not sedation. p -Chlorophenylalanine did not block characteristic signs elicited by reserpine or tetrabenazine in rats. Accordingly, the central actions of reserpine and reserpine-like drugs may possibly be dissociated from both 5HT concentrations and the formation of new 5HT in brain.
科研通智能强力驱动
Strongly Powered by AbleSci AI