氟哌啶醇
药理学
毒蕈碱激动剂
氯氮平
兴奋剂
化学
毒蕈碱乙酰胆碱受体
内分泌学
内科学
阿扑吗啡
毒蕈碱乙酰胆碱受体M1
多巴胺
医学
受体
精神分裂症(面向对象编程)
精神科
作者
Kelly J. Stanhope,Nawazish Mirza,Mike Bickerdike,Joanne L. Bright,N. R. Harrington,M.B. Hesselink,G.A. Kennett,Sean Lightowler,Malcolm J. Sheardown,Raisa Syed,Rebecca Upton,Graham Wadsworth,Scott Μ. Weiss,A. C. Wyatt
出处
期刊:PubMed
日期:2001-11-01
卷期号:299 (2): 782-92
被引量:114
摘要
The muscarinic receptor agonist xanomeline was examined and compared with the antipsychotics clozapine and/or haloperidol in the following in vivo rat models: apomorphine-induced disruption of prepulse inhibition (PPI), amphetamine-induced hyperlocomotion, and the conditioned emotional response (CER) test. The effects of xanomeline were also assessed ex vivo on dopamine turnover in the rat medial prefrontal cortex. Under conditions of varying dose and prepulse intensity, xanomeline, like haloperidol, had no effect on PPI. In contrast, the muscarinic receptor antagonist scopolamine and the muscarinic receptor agonist pilocarpine both induced significant dose-dependent deficits in PPI. Haloperidol and xanomeline, but not pilocarpine, dose dependently reversed apomorphine-induced disruption of PPI. Thus, xanomeline induced a clear antipsychotic-like effect in PPI, whereas pilocarpine appeared to induce a psychotomimetic-like effect. Xanomeline attenuated amphetamine-induced hyperactivity at doses that had no effect on spontaneous activity, possibly indicating a separation between attenuation of limbic hyperdopaminergic function and the induction of hypolocomotion. Haloperidol and clozapine also reversed amphetamine-induced hyperlocomotion, but at similar doses to those that reduced spontaneous locomotion. Clozapine, but not haloperidol had an anxiolytic-like effect in the CER test. The effects of xanomeline in the CER test were similar to those of clozapine, although at the anxiolytic dose it tended to disrupt baseline levels of lever pressing. Finally, haloperidol, clozapine, pilocarpine, and xanomeline, all induced an increase in dopamine turnover in medial prefrontal cortex. The antipsychotic-like effects of xanomeline in the animal models used here suggest that it may be a useful treatment for psychosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI