Whole transcriptome sequencing identifies tumor-specific mutations in human oral squamous cell carcinoma

生物 转录组 基因 体细胞 突变 遗传学 种系突变 计算生物学 癌症研究 基因表达
作者
Qu Zhang,Jun Zhang,Hongchuan Jin,Sitong Sheng
出处
期刊:BMC Medical Genomics [BioMed Central]
卷期号:6 (1) 被引量:31
标识
DOI:10.1186/1755-8794-6-28
摘要

The accumulation of somatic mutations in genes and molecular pathways is a major factor in the evolution of oral squamous cell carcinoma (OSCC), which sparks studies to identify somatic mutations with clinical potentials. Recently, massively parallel sequencing technique has started to revolutionize biomedical studies, due to the rapid increase in its throughput and drop in cost. Hence sequencing of whole transcriptome (RNA-Seq) becomes a superior approach in cancer studies, which enables the detection of somatic mutations and accurate measurement of gene expression simultaneously. We used RNA-Seq data from tumor and matched normal samples to investigate somatic mutation spectrum in OSCC. By applying a sophisticated bioinformatic pipeline, we interrogated two tumor samples and their matched normal tissues and identified 70,472 tumor somatic mutations in protein-coding regions. We further identified 515 significantly mutated genes (SMGs) and 156 tumor-specific disruptive genes (TDGs), with six genes in both sets, including ANKRA2, GTF2H5, STOML1, NUP37, PPP1R26, and TAF1L. Pathway analysis suggested that SMGs were enriched in cell adhesion pathways, which are frequently indicated in tumor development. We also found that SMGs tend to be differentially expressed between tumors and normal tissues, implying a regulatory role of accumulation of genetic aberrations in these genes. Our finding of known tumor genes proves of the utility of RNA-Seq in mutation screening, and functional analysis of genes detected here would help understand the molecular mechanism of OSCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
李禾和完成签到,获得积分10
1秒前
太子发布了新的文献求助10
1秒前
丁一完成签到,获得积分10
1秒前
123完成签到,获得积分10
1秒前
m木宁木蒙发布了新的文献求助10
1秒前
丘比特应助DT采纳,获得10
2秒前
任性若山发布了新的文献求助10
2秒前
2秒前
秋作完成签到,获得积分10
2秒前
张afsbdtw完成签到,获得积分10
2秒前
2秒前
小巧安柏完成签到,获得积分10
3秒前
乐乐应助喵卫五更采纳,获得10
3秒前
4秒前
4秒前
科研通AI5应助accept来采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
简柠完成签到,获得积分10
6秒前
大模型应助可爱怀莲采纳,获得10
6秒前
单薄忆梅发布了新的文献求助10
6秒前
小逸完成签到 ,获得积分20
6秒前
四号玩家发布了新的文献求助10
6秒前
gwp1223发布了新的文献求助40
7秒前
沉默的莞发布了新的文献求助10
7秒前
含蓄的大船完成签到,获得积分10
7秒前
李健应助22222采纳,获得10
8秒前
zho发布了新的文献求助10
8秒前
9秒前
宋博完成签到,获得积分10
9秒前
9秒前
louxiaohan完成签到,获得积分10
9秒前
纯真冰露完成签到,获得积分10
9秒前
滴滴完成签到 ,获得积分10
9秒前
9秒前
晓书斋完成签到,获得积分10
9秒前
kjh完成签到,获得积分10
10秒前
tongbuxiang完成签到,获得积分10
10秒前
薏晓完成签到 ,获得积分10
10秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3667657
求助须知:如何正确求助?哪些是违规求助? 3226188
关于积分的说明 9768281
捐赠科研通 2936167
什么是DOI,文献DOI怎么找? 1608152
邀请新用户注册赠送积分活动 759520
科研通“疑难数据库(出版商)”最低求助积分说明 735404