亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial intelligence approach to the identification of the Well test interpretation model

人工智能 计算机科学 鉴定(生物学) 黑板(设计模式) 机器学习 口译(哲学) 人工神经网络 领域(数学) 黑板系统 模式识别(心理学) 数学 植物 生物 程序设计语言 纯数学
作者
Abdulaziz Obaid Al-Kaabi
链接
摘要

The accuracy of reservoir properties estimated from tests depends on prior identification of a model which describes the underground system accurately. This model is known as the well test interpretation The objective of this study is to present a new approach to solve the problem of identifying this model. Our approach is based on integrating artificial intelligence, pattern recognition, and history matching techniques. Using artificial intelligence techniques, we developed a knowledge-based system of carefully extracted rules and facts that determines the interpretation model in a manner parallel to techniques human experts use. The knowledge in the system imitates that of an expert in testing. The knowledge base employs Blackboard Architecture as a problem-solving model and as the control mechanism. Pattern recognition techniques were used to identify a preliminary test interpretation model automatically from the derivative plot. Two pattern recognition techniques were implemented: syntactic and adaptive pattern recognition techniques. Syntactic pattern recognition uses symbolic and rule-based approaches to simulate the human vision task. Adaptive pattern recognition uses a distributed approach in the form of an artificial neural network. Both techniques were applied successfully to identify the test interpretation model. However, we found the adaptive pattern recognition approach more tolerant to noise in field data than syntactic pattern recognition. To simulate and verify the identified test interpretation model, we built a library of test analytical models. This library is linked to a parameter estimation program which applies the Levenberg-Marquardt method. We found the approach presented in this dissertation useful in assisting the engineer to identify the test interpretation model. We successfully applied our approach to identify the test interpretation model from field test data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
怂宝儿发布了新的文献求助10
3秒前
虚拟的画板完成签到 ,获得积分10
4秒前
Joeswith发布了新的文献求助10
9秒前
1233445完成签到,获得积分10
11秒前
小鱼完成签到 ,获得积分10
15秒前
19秒前
完美世界应助科研通管家采纳,获得10
20秒前
Muhammad发布了新的文献求助10
23秒前
Ree发布了新的文献求助30
40秒前
Akim应助赣南橙采纳,获得10
42秒前
科研通AI6应助Ree采纳,获得10
49秒前
陆康完成签到 ,获得积分10
57秒前
1分钟前
充电宝应助艺玲采纳,获得10
1分钟前
Muhammad发布了新的文献求助10
1分钟前
maher完成签到,获得积分10
1分钟前
1分钟前
1分钟前
艺玲发布了新的文献求助10
1分钟前
赣南橙发布了新的文献求助10
1分钟前
1分钟前
Muhammad发布了新的文献求助10
1分钟前
1分钟前
烂漫的绿茶完成签到 ,获得积分10
1分钟前
1分钟前
赣南橙完成签到,获得积分10
1分钟前
雨相所至发布了新的文献求助10
1分钟前
光亮梦松发布了新的文献求助10
1分钟前
雨相所至完成签到,获得积分10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
苹果颖发布了新的文献求助10
2分钟前
我爱科研完成签到,获得积分10
2分钟前
Michaelialzm完成签到,获得积分10
2分钟前
2分钟前
Mark_He发布了新的文献求助10
2分钟前
大气的玉米完成签到 ,获得积分10
2分钟前
nhzz2023完成签到 ,获得积分0
3分钟前
共享精神应助光亮梦松采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554741
求助须知:如何正确求助?哪些是违规求助? 4639342
关于积分的说明 14656067
捐赠科研通 4581239
什么是DOI,文献DOI怎么找? 2512662
邀请新用户注册赠送积分活动 1487403
关于科研通互助平台的介绍 1458322