亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial intelligence approach to the identification of the Well test interpretation model

人工智能 计算机科学 鉴定(生物学) 黑板(设计模式) 机器学习 口译(哲学) 人工神经网络 领域(数学) 黑板系统 模式识别(心理学) 数学 植物 生物 程序设计语言 纯数学
作者
Abdulaziz Obaid Al-Kaabi
链接
摘要

The accuracy of reservoir properties estimated from tests depends on prior identification of a model which describes the underground system accurately. This model is known as the well test interpretation The objective of this study is to present a new approach to solve the problem of identifying this model. Our approach is based on integrating artificial intelligence, pattern recognition, and history matching techniques. Using artificial intelligence techniques, we developed a knowledge-based system of carefully extracted rules and facts that determines the interpretation model in a manner parallel to techniques human experts use. The knowledge in the system imitates that of an expert in testing. The knowledge base employs Blackboard Architecture as a problem-solving model and as the control mechanism. Pattern recognition techniques were used to identify a preliminary test interpretation model automatically from the derivative plot. Two pattern recognition techniques were implemented: syntactic and adaptive pattern recognition techniques. Syntactic pattern recognition uses symbolic and rule-based approaches to simulate the human vision task. Adaptive pattern recognition uses a distributed approach in the form of an artificial neural network. Both techniques were applied successfully to identify the test interpretation model. However, we found the adaptive pattern recognition approach more tolerant to noise in field data than syntactic pattern recognition. To simulate and verify the identified test interpretation model, we built a library of test analytical models. This library is linked to a parameter estimation program which applies the Levenberg-Marquardt method. We found the approach presented in this dissertation useful in assisting the engineer to identify the test interpretation model. We successfully applied our approach to identify the test interpretation model from field test data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
Candices发布了新的文献求助10
11秒前
张晓祁完成签到,获得积分10
11秒前
朴素的山蝶完成签到 ,获得积分10
15秒前
20秒前
英俊的铭应助自觉的人龙采纳,获得10
20秒前
21秒前
yueying完成签到,获得积分10
22秒前
24秒前
24秒前
kentonchow应助微笑睫毛采纳,获得10
24秒前
25秒前
25秒前
Celeste发布了新的文献求助10
26秒前
xu完成签到,获得积分10
27秒前
kentonchow应助小解采纳,获得10
27秒前
Shawn发布了新的文献求助10
29秒前
ho应助科研通管家采纳,获得10
32秒前
ho应助科研通管家采纳,获得10
32秒前
32秒前
Celeste发布了新的文献求助10
57秒前
Akim应助Candices采纳,获得10
1分钟前
1分钟前
Pikaluo发布了新的文献求助10
1分钟前
今后应助Celeste采纳,获得10
1分钟前
Candices完成签到,获得积分10
1分钟前
细心八宝粥完成签到 ,获得积分10
1分钟前
1分钟前
Zeeki完成签到 ,获得积分10
1分钟前
lllllllllzx完成签到,获得积分10
1分钟前
ceeray23发布了新的文献求助200
1分钟前
Pikaluo完成签到,获得积分10
1分钟前
希望天下0贩的0应助tt采纳,获得10
1分钟前
1分钟前
1分钟前
顺颂时祺发布了新的文献求助10
1分钟前
1分钟前
2分钟前
FG发布了新的文献求助10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5376400
求助须知:如何正确求助?哪些是违规求助? 4501498
关于积分的说明 14013106
捐赠科研通 4409293
什么是DOI,文献DOI怎么找? 2422135
邀请新用户注册赠送积分活动 1414947
关于科研通互助平台的介绍 1391827