Artificial intelligence approach to the identification of the Well test interpretation model

人工智能 计算机科学 鉴定(生物学) 黑板(设计模式) 机器学习 口译(哲学) 人工神经网络 领域(数学) 黑板系统 模式识别(心理学) 数学 植物 生物 程序设计语言 纯数学
作者
Abdulaziz Obaid Al-Kaabi
链接
摘要

The accuracy of reservoir properties estimated from tests depends on prior identification of a model which describes the underground system accurately. This model is known as the well test interpretation The objective of this study is to present a new approach to solve the problem of identifying this model. Our approach is based on integrating artificial intelligence, pattern recognition, and history matching techniques. Using artificial intelligence techniques, we developed a knowledge-based system of carefully extracted rules and facts that determines the interpretation model in a manner parallel to techniques human experts use. The knowledge in the system imitates that of an expert in testing. The knowledge base employs Blackboard Architecture as a problem-solving model and as the control mechanism. Pattern recognition techniques were used to identify a preliminary test interpretation model automatically from the derivative plot. Two pattern recognition techniques were implemented: syntactic and adaptive pattern recognition techniques. Syntactic pattern recognition uses symbolic and rule-based approaches to simulate the human vision task. Adaptive pattern recognition uses a distributed approach in the form of an artificial neural network. Both techniques were applied successfully to identify the test interpretation model. However, we found the adaptive pattern recognition approach more tolerant to noise in field data than syntactic pattern recognition. To simulate and verify the identified test interpretation model, we built a library of test analytical models. This library is linked to a parameter estimation program which applies the Levenberg-Marquardt method. We found the approach presented in this dissertation useful in assisting the engineer to identify the test interpretation model. We successfully applied our approach to identify the test interpretation model from field test data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
枯木逢春发布了新的文献求助10
刚刚
科研yu完成签到,获得积分10
1秒前
完美世界应助xieenxe采纳,获得10
1秒前
2秒前
2秒前
三更笔舞完成签到,获得积分10
3秒前
yh完成签到,获得积分10
3秒前
4秒前
蛟凤发布了新的文献求助10
4秒前
华仔应助Fryanto采纳,获得10
5秒前
深情安青应助美丽访云采纳,获得10
5秒前
yh发布了新的文献求助10
6秒前
zjb发布了新的文献求助10
6秒前
ffccj发布了新的文献求助10
7秒前
脑洞疼应助songxiyuan816采纳,获得10
7秒前
8秒前
8秒前
Kriemhild完成签到,获得积分10
9秒前
9秒前
11秒前
12秒前
852应助Han采纳,获得10
12秒前
12秒前
13秒前
三更笔舞发布了新的文献求助20
13秒前
14秒前
15秒前
yinbo141121发布了新的文献求助10
15秒前
孤独梦安发布了新的文献求助10
17秒前
17秒前
17秒前
17秒前
xieenxe发布了新的文献求助10
18秒前
完美的him完成签到,获得积分10
18秒前
写给流浪完成签到,获得积分10
18秒前
舒适的秋尽完成签到 ,获得积分10
18秒前
18秒前
Owen发布了新的文献求助30
18秒前
康康米其林完成签到,获得积分10
18秒前
王润完成签到,获得积分10
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308756
求助须知:如何正确求助?哪些是违规求助? 2942097
关于积分的说明 8507396
捐赠科研通 2617067
什么是DOI,文献DOI怎么找? 1429972
科研通“疑难数据库(出版商)”最低求助积分说明 663969
邀请新用户注册赠送积分活动 649186