Artificial intelligence approach to the identification of the Well test interpretation model

人工智能 计算机科学 鉴定(生物学) 黑板(设计模式) 机器学习 口译(哲学) 人工神经网络 领域(数学) 黑板系统 模式识别(心理学) 植物 数学 纯数学 生物 程序设计语言
作者
Abdulaziz Obaid Al-Kaabi
链接
摘要

The accuracy of reservoir properties estimated from tests depends on prior identification of a model which describes the underground system accurately. This model is known as the well test interpretation The objective of this study is to present a new approach to solve the problem of identifying this model. Our approach is based on integrating artificial intelligence, pattern recognition, and history matching techniques. Using artificial intelligence techniques, we developed a knowledge-based system of carefully extracted rules and facts that determines the interpretation model in a manner parallel to techniques human experts use. The knowledge in the system imitates that of an expert in testing. The knowledge base employs Blackboard Architecture as a problem-solving model and as the control mechanism. Pattern recognition techniques were used to identify a preliminary test interpretation model automatically from the derivative plot. Two pattern recognition techniques were implemented: syntactic and adaptive pattern recognition techniques. Syntactic pattern recognition uses symbolic and rule-based approaches to simulate the human vision task. Adaptive pattern recognition uses a distributed approach in the form of an artificial neural network. Both techniques were applied successfully to identify the test interpretation model. However, we found the adaptive pattern recognition approach more tolerant to noise in field data than syntactic pattern recognition. To simulate and verify the identified test interpretation model, we built a library of test analytical models. This library is linked to a parameter estimation program which applies the Levenberg-Marquardt method. We found the approach presented in this dissertation useful in assisting the engineer to identify the test interpretation model. We successfully applied our approach to identify the test interpretation model from field test data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shinian完成签到 ,获得积分10
1秒前
东西南北完成签到,获得积分10
1秒前
苏桑焉完成签到 ,获得积分10
1秒前
啦啦啦发布了新的文献求助10
1秒前
上官若男应助zyl采纳,获得10
1秒前
刘静完成签到,获得积分10
2秒前
CR7应助科研通管家采纳,获得50
3秒前
DijiaXu应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
3秒前
修杰应助科研通管家采纳,获得10
3秒前
DijiaXu应助科研通管家采纳,获得10
3秒前
Mannose完成签到,获得积分10
3秒前
打打应助科研通管家采纳,获得30
3秒前
DijiaXu应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
科研通AI2S应助英子采纳,获得10
4秒前
王子心发布了新的文献求助10
4秒前
Yasing完成签到,获得积分10
5秒前
5秒前
ding应助啦啦啦采纳,获得10
6秒前
十年完成签到 ,获得积分10
8秒前
lalalapa666完成签到,获得积分10
8秒前
sue完成签到,获得积分10
8秒前
笑点低的泥猴桃完成签到,获得积分10
8秒前
swsx1317完成签到,获得积分10
8秒前
9秒前
自然紫山完成签到,获得积分10
9秒前
在水一方应助Wdd采纳,获得10
9秒前
yiyi完成签到,获得积分10
9秒前
火狐狸kc完成签到,获得积分10
10秒前
SwampMan完成签到 ,获得积分10
11秒前
Seiswan完成签到,获得积分10
11秒前
11秒前
研友_nPPdan完成签到,获得积分10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015970
求助须知:如何正确求助?哪些是违规求助? 3555964
关于积分的说明 11319479
捐赠科研通 3289040
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812044