Development and validation of an MRI-based radiomic model for predicting overall survival in nasopharyngeal carcinoma patients with local residual tumors after intensity-modulated radiotherapy

医学 鼻咽癌 一致性 单变量 队列 列线图 比例危险模型 单变量分析 Lasso(编程语言) 接收机工作特性 核医学 放射科 放射治疗 肿瘤科 内科学 统计 多元分析 多元统计 数学 计算机科学 万维网
作者
Shengping Jiang,Han Chieh Lin,Leifeng Liang,Линг Лонг
出处
期刊:BMC Medical Imaging [Springer Nature]
卷期号:22 (1)
标识
DOI:10.1186/s12880-022-00902-6
摘要

Abstract Background To investigate the potential value of the pretreatment MRI-based radiomic model in predicting the overall survival (OS) of nasopharyngeal carcinoma (NPC) patients with local residual tumors after intensity-modulated radiotherapy (IMRT). Methods A total of 218 consecutive nonmetastatic NPC patients with local residual tumors after IMRT [training cohort (n = 173) and validation cohort (n = 45)] were retrospectively included in this study. Clinical and MRI data were obtained. Univariate Cox regression and the least absolute shrinkage and selection operator (LASSO) were used to select the radiomic features from pretreatment MRI. The clinical, radiomic, and combined models for predicting OS were constructed. The models’ performances were evaluated using Harrell’s concordance index (C-index), calibration curve, and decision curve analysis. Results The C-index of the radiomic model was higher than that of the clinical model, with the C-index of 0.788 (95% CI 0.724–0.852) versus 0.672 (95% CI 0.599–0.745) in the training cohort and 0.753 (95% CI 0.604–0.902) versus 0.634 (95% CI 0.593–0.675) in the validation cohort. Calibration curves showed good agreement between the radiomic model-predicted probability of 2- and 3-year OS and the actual observed probability in the training and validation groups. Decision curve analysis showed that the radiomic model had higher clinical usefulness than the clinical model. The discrimination of the combined model improved significantly in the training cohort ( P < 0.01) but not in the validation cohort, with the C-index of 0.834 and 0.734, respectively. The radiomic model divided patients into high- and low-risk groups with a significant difference in OS in both the training and validation cohorts. Conclusions Pretreatment MRI-based radiomic model may improve OS prediction in NPC patients with local residual tumors after IMRT and may assist in clinical decision-making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宋晨瑜发布了新的文献求助10
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
张火火完成签到,获得积分10
2秒前
阿言发布了新的文献求助10
3秒前
4秒前
4秒前
独特纸飞机完成签到 ,获得积分10
5秒前
牧紫菱完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
冷艳铁身发布了新的文献求助10
6秒前
Phoebe完成签到,获得积分10
6秒前
马来自农村的马完成签到 ,获得积分10
8秒前
8秒前
ju龙哥完成签到,获得积分10
10秒前
10秒前
李健的粉丝团团长应助asda采纳,获得30
10秒前
Owen发布了新的文献求助20
11秒前
13秒前
情怀应助懿懿采纳,获得10
13秒前
xiaoxueyi发布了新的文献求助10
15秒前
冷艳铁身完成签到,获得积分10
16秒前
123发布了新的文献求助10
17秒前
鳗鱼捕完成签到,获得积分10
17秒前
曾绍炜完成签到,获得积分10
17秒前
Criminology34应助白小黑采纳,获得10
18秒前
量子星尘发布了新的文献求助10
18秒前
叶落发布了新的文献求助10
18秒前
sens完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
SHY发布了新的文献求助10
19秒前
19秒前
幸运星完成签到,获得积分10
22秒前
传奇3应助苹果黄蜂采纳,获得10
24秒前
科研通AI6.1应助INNE采纳,获得10
24秒前
24秒前
酷波er应助123采纳,获得10
25秒前
26秒前
阿宝完成签到,获得积分10
27秒前
sdzylx7发布了新的文献求助10
27秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5749517
求助须知:如何正确求助?哪些是违规求助? 5459212
关于积分的说明 15363842
捐赠科研通 4888951
什么是DOI,文献DOI怎么找? 2628829
邀请新用户注册赠送积分活动 1577110
关于科研通互助平台的介绍 1533774