Development and validation of an MRI-based radiomic model for predicting overall survival in nasopharyngeal carcinoma patients with local residual tumors after intensity-modulated radiotherapy

医学 鼻咽癌 一致性 单变量 队列 列线图 比例危险模型 单变量分析 Lasso(编程语言) 接收机工作特性 核医学 放射科 放射治疗 肿瘤科 内科学 统计 多元分析 多元统计 数学 计算机科学 万维网
作者
Shengping Jiang,Han Chieh Lin,Leifeng Liang,Линг Лонг
出处
期刊:BMC Medical Imaging [BioMed Central]
卷期号:22 (1)
标识
DOI:10.1186/s12880-022-00902-6
摘要

Abstract Background To investigate the potential value of the pretreatment MRI-based radiomic model in predicting the overall survival (OS) of nasopharyngeal carcinoma (NPC) patients with local residual tumors after intensity-modulated radiotherapy (IMRT). Methods A total of 218 consecutive nonmetastatic NPC patients with local residual tumors after IMRT [training cohort (n = 173) and validation cohort (n = 45)] were retrospectively included in this study. Clinical and MRI data were obtained. Univariate Cox regression and the least absolute shrinkage and selection operator (LASSO) were used to select the radiomic features from pretreatment MRI. The clinical, radiomic, and combined models for predicting OS were constructed. The models’ performances were evaluated using Harrell’s concordance index (C-index), calibration curve, and decision curve analysis. Results The C-index of the radiomic model was higher than that of the clinical model, with the C-index of 0.788 (95% CI 0.724–0.852) versus 0.672 (95% CI 0.599–0.745) in the training cohort and 0.753 (95% CI 0.604–0.902) versus 0.634 (95% CI 0.593–0.675) in the validation cohort. Calibration curves showed good agreement between the radiomic model-predicted probability of 2- and 3-year OS and the actual observed probability in the training and validation groups. Decision curve analysis showed that the radiomic model had higher clinical usefulness than the clinical model. The discrimination of the combined model improved significantly in the training cohort ( P < 0.01) but not in the validation cohort, with the C-index of 0.834 and 0.734, respectively. The radiomic model divided patients into high- and low-risk groups with a significant difference in OS in both the training and validation cohorts. Conclusions Pretreatment MRI-based radiomic model may improve OS prediction in NPC patients with local residual tumors after IMRT and may assist in clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浅笑完成签到,获得积分10
1秒前
今后应助yyyyy采纳,获得10
1秒前
1秒前
SciGPT应助平常的蜜粉采纳,获得10
1秒前
JamesPei应助平常的蜜粉采纳,获得10
1秒前
科研通AI2S应助carat采纳,获得10
1秒前
riverlove7完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
5秒前
5秒前
5秒前
ty完成签到,获得积分20
6秒前
SYLH应助冷艳笑卉采纳,获得10
6秒前
务实凡灵完成签到,获得积分10
6秒前
风中怜寒发布了新的文献求助10
6秒前
7秒前
害羞无春发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
牛牛发布了新的文献求助10
8秒前
123发布了新的文献求助10
9秒前
小蘑菇应助研友_LwbeX8采纳,获得10
9秒前
科研通AI2S应助ymxlcfc采纳,获得10
9秒前
9秒前
mirayq发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
11秒前
chen发布了新的文献求助10
11秒前
zzz发布了新的文献求助30
12秒前
香蕉觅云应助优秀星星采纳,获得10
12秒前
mawenxing完成签到,获得积分10
12秒前
英俊的铭应助YY采纳,获得10
13秒前
青衣北风发布了新的文献求助10
13秒前
乏味发布了新的文献求助10
13秒前
CAOHOU应助1234采纳,获得10
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979392
求助须知:如何正确求助?哪些是违规求助? 3523308
关于积分的说明 11217159
捐赠科研通 3260797
什么是DOI,文献DOI怎么找? 1800211
邀请新用户注册赠送积分活动 878960
科研通“疑难数据库(出版商)”最低求助积分说明 807113