亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development and validation of an MRI-based radiomic model for predicting overall survival in nasopharyngeal carcinoma patients with local residual tumors after intensity-modulated radiotherapy

医学 鼻咽癌 一致性 单变量 队列 列线图 比例危险模型 单变量分析 Lasso(编程语言) 接收机工作特性 核医学 放射科 放射治疗 肿瘤科 内科学 统计 多元分析 多元统计 数学 计算机科学 万维网
作者
Shengping Jiang,Han Chieh Lin,Leifeng Liang,Линг Лонг
出处
期刊:BMC Medical Imaging [BioMed Central]
卷期号:22 (1)
标识
DOI:10.1186/s12880-022-00902-6
摘要

Abstract Background To investigate the potential value of the pretreatment MRI-based radiomic model in predicting the overall survival (OS) of nasopharyngeal carcinoma (NPC) patients with local residual tumors after intensity-modulated radiotherapy (IMRT). Methods A total of 218 consecutive nonmetastatic NPC patients with local residual tumors after IMRT [training cohort (n = 173) and validation cohort (n = 45)] were retrospectively included in this study. Clinical and MRI data were obtained. Univariate Cox regression and the least absolute shrinkage and selection operator (LASSO) were used to select the radiomic features from pretreatment MRI. The clinical, radiomic, and combined models for predicting OS were constructed. The models’ performances were evaluated using Harrell’s concordance index (C-index), calibration curve, and decision curve analysis. Results The C-index of the radiomic model was higher than that of the clinical model, with the C-index of 0.788 (95% CI 0.724–0.852) versus 0.672 (95% CI 0.599–0.745) in the training cohort and 0.753 (95% CI 0.604–0.902) versus 0.634 (95% CI 0.593–0.675) in the validation cohort. Calibration curves showed good agreement between the radiomic model-predicted probability of 2- and 3-year OS and the actual observed probability in the training and validation groups. Decision curve analysis showed that the radiomic model had higher clinical usefulness than the clinical model. The discrimination of the combined model improved significantly in the training cohort ( P < 0.01) but not in the validation cohort, with the C-index of 0.834 and 0.734, respectively. The radiomic model divided patients into high- and low-risk groups with a significant difference in OS in both the training and validation cohorts. Conclusions Pretreatment MRI-based radiomic model may improve OS prediction in NPC patients with local residual tumors after IMRT and may assist in clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
wxy发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助150
55秒前
吃了吃了完成签到,获得积分10
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
1分钟前
akakns完成签到 ,获得积分10
1分钟前
2分钟前
捉迷藏给清新的冰海的求助进行了留言
2分钟前
2分钟前
hh发布了新的文献求助10
2分钟前
汉堡包应助ceeray23采纳,获得20
2分钟前
传奇3应助王瑾言采纳,获得10
2分钟前
阿治完成签到 ,获得积分0
2分钟前
lihuahui发布了新的文献求助10
2分钟前
科研通AI5应助Dzexin采纳,获得150
2分钟前
2分钟前
yuanmay应助lihuahui采纳,获得10
2分钟前
Dzexin发布了新的文献求助150
2分钟前
2分钟前
2分钟前
ceeray23发布了新的文献求助20
2分钟前
王瑾言发布了新的文献求助10
2分钟前
3分钟前
科研通AI2S应助NiNi采纳,获得10
3分钟前
VESong发布了新的文献求助10
3分钟前
小王爱看文献完成签到 ,获得积分0
3分钟前
捉迷藏给清新的冰海的求助进行了留言
3分钟前
无聊的难敌完成签到,获得积分10
3分钟前
彭于晏应助王瑾言采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得30
3分钟前
fjq95133完成签到 ,获得积分10
3分钟前
ceeray23发布了新的文献求助20
3分钟前
3分钟前
一比吊糟的kk完成签到,获得积分10
3分钟前
王瑾言发布了新的文献求助10
4分钟前
尊敬的沛山完成签到,获得积分10
4分钟前
王瑾言发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Athena操作手册 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5042584
求助须知:如何正确求助?哪些是违规求助? 4273052
关于积分的说明 13322016
捐赠科研通 4085897
什么是DOI,文献DOI怎么找? 2235429
邀请新用户注册赠送积分活动 1242948
关于科研通互助平台的介绍 1170015