Development and validation of an MRI-based radiomic model for predicting overall survival in nasopharyngeal carcinoma patients with local residual tumors after intensity-modulated radiotherapy

医学 鼻咽癌 一致性 单变量 队列 列线图 比例危险模型 单变量分析 Lasso(编程语言) 接收机工作特性 核医学 放射科 放射治疗 肿瘤科 内科学 统计 多元分析 多元统计 数学 计算机科学 万维网
作者
Shengping Jiang,Han Chieh Lin,Leifeng Liang,Линг Лонг
出处
期刊:BMC Medical Imaging [Springer Nature]
卷期号:22 (1)
标识
DOI:10.1186/s12880-022-00902-6
摘要

Abstract Background To investigate the potential value of the pretreatment MRI-based radiomic model in predicting the overall survival (OS) of nasopharyngeal carcinoma (NPC) patients with local residual tumors after intensity-modulated radiotherapy (IMRT). Methods A total of 218 consecutive nonmetastatic NPC patients with local residual tumors after IMRT [training cohort (n = 173) and validation cohort (n = 45)] were retrospectively included in this study. Clinical and MRI data were obtained. Univariate Cox regression and the least absolute shrinkage and selection operator (LASSO) were used to select the radiomic features from pretreatment MRI. The clinical, radiomic, and combined models for predicting OS were constructed. The models’ performances were evaluated using Harrell’s concordance index (C-index), calibration curve, and decision curve analysis. Results The C-index of the radiomic model was higher than that of the clinical model, with the C-index of 0.788 (95% CI 0.724–0.852) versus 0.672 (95% CI 0.599–0.745) in the training cohort and 0.753 (95% CI 0.604–0.902) versus 0.634 (95% CI 0.593–0.675) in the validation cohort. Calibration curves showed good agreement between the radiomic model-predicted probability of 2- and 3-year OS and the actual observed probability in the training and validation groups. Decision curve analysis showed that the radiomic model had higher clinical usefulness than the clinical model. The discrimination of the combined model improved significantly in the training cohort ( P < 0.01) but not in the validation cohort, with the C-index of 0.834 and 0.734, respectively. The radiomic model divided patients into high- and low-risk groups with a significant difference in OS in both the training and validation cohorts. Conclusions Pretreatment MRI-based radiomic model may improve OS prediction in NPC patients with local residual tumors after IMRT and may assist in clinical decision-making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小曾发布了新的文献求助10
刚刚
刚刚
Hilda007应助LinCheng采纳,获得10
刚刚
平淡黑裤完成签到,获得积分20
1秒前
泡泡完成签到,获得积分10
1秒前
完美世界应助专注寻菱采纳,获得10
1秒前
YUYUYU完成签到,获得积分10
2秒前
江南刀王发布了新的文献求助10
2秒前
濛嘻嘻发布了新的文献求助10
2秒前
小夏发布了新的文献求助10
3秒前
3秒前
专注的雪完成签到 ,获得积分10
3秒前
白瑾发布了新的文献求助10
3秒前
无花果应助灵巧安青采纳,获得10
3秒前
稻草人完成签到 ,获得积分10
4秒前
我是老大应助高大笙采纳,获得10
4秒前
所所应助飘逸易文采纳,获得10
4秒前
坚强白凝完成签到,获得积分10
5秒前
科研通AI6应助刘逸飞采纳,获得30
5秒前
Jasper应助谦让谷菱采纳,获得10
5秒前
prove发布了新的文献求助10
5秒前
刻苦牛马完成签到 ,获得积分10
5秒前
lalala发布了新的文献求助10
5秒前
追寻的夏波应助永毅采纳,获得10
5秒前
年轻的背包完成签到,获得积分10
6秒前
无聊的可冥发布了新的文献求助100
6秒前
杨承武完成签到,获得积分10
6秒前
刘海清完成签到,获得积分10
7秒前
7秒前
研友_ndka5L发布了新的文献求助10
7秒前
8秒前
QQQ完成签到,获得积分10
8秒前
Shannon完成签到,获得积分10
8秒前
xinxin完成签到,获得积分10
8秒前
8秒前
8秒前
aobadong完成签到,获得积分10
9秒前
9秒前
9秒前
小小油应助葵花籽采纳,获得30
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609460
求助须知:如何正确求助?哪些是违规求助? 4694074
关于积分的说明 14880935
捐赠科研通 4719643
什么是DOI,文献DOI怎么找? 2544750
邀请新用户注册赠送积分活动 1509658
关于科研通互助平台的介绍 1472950