Development and validation of an MRI-based radiomic model for predicting overall survival in nasopharyngeal carcinoma patients with local residual tumors after intensity-modulated radiotherapy

医学 鼻咽癌 一致性 单变量 队列 列线图 比例危险模型 单变量分析 Lasso(编程语言) 接收机工作特性 核医学 放射科 放射治疗 肿瘤科 内科学 统计 多元分析 多元统计 数学 计算机科学 万维网
作者
Shengping Jiang,Han Chieh Lin,Leifeng Liang,Линг Лонг
出处
期刊:BMC Medical Imaging [Springer Nature]
卷期号:22 (1)
标识
DOI:10.1186/s12880-022-00902-6
摘要

Abstract Background To investigate the potential value of the pretreatment MRI-based radiomic model in predicting the overall survival (OS) of nasopharyngeal carcinoma (NPC) patients with local residual tumors after intensity-modulated radiotherapy (IMRT). Methods A total of 218 consecutive nonmetastatic NPC patients with local residual tumors after IMRT [training cohort (n = 173) and validation cohort (n = 45)] were retrospectively included in this study. Clinical and MRI data were obtained. Univariate Cox regression and the least absolute shrinkage and selection operator (LASSO) were used to select the radiomic features from pretreatment MRI. The clinical, radiomic, and combined models for predicting OS were constructed. The models’ performances were evaluated using Harrell’s concordance index (C-index), calibration curve, and decision curve analysis. Results The C-index of the radiomic model was higher than that of the clinical model, with the C-index of 0.788 (95% CI 0.724–0.852) versus 0.672 (95% CI 0.599–0.745) in the training cohort and 0.753 (95% CI 0.604–0.902) versus 0.634 (95% CI 0.593–0.675) in the validation cohort. Calibration curves showed good agreement between the radiomic model-predicted probability of 2- and 3-year OS and the actual observed probability in the training and validation groups. Decision curve analysis showed that the radiomic model had higher clinical usefulness than the clinical model. The discrimination of the combined model improved significantly in the training cohort ( P < 0.01) but not in the validation cohort, with the C-index of 0.834 and 0.734, respectively. The radiomic model divided patients into high- and low-risk groups with a significant difference in OS in both the training and validation cohorts. Conclusions Pretreatment MRI-based radiomic model may improve OS prediction in NPC patients with local residual tumors after IMRT and may assist in clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
这是美式发布了新的文献求助10
刚刚
杜石完成签到,获得积分10
1秒前
ddz发布了新的文献求助10
1秒前
SciGPT应助繁荣的凡英采纳,获得10
3秒前
5秒前
李爱国应助春鸟采纳,获得10
5秒前
晚心完成签到,获得积分10
5秒前
susu完成签到,获得积分10
6秒前
Owen应助健壮听筠采纳,获得10
6秒前
甘霖完成签到,获得积分10
7秒前
8秒前
tianugui完成签到,获得积分10
8秒前
Jasper应助周文采纳,获得10
9秒前
芸沐发布了新的文献求助10
10秒前
傻傻的盛男完成签到,获得积分10
10秒前
10秒前
善学以致用应助康兴宇采纳,获得10
10秒前
ddz完成签到,获得积分10
10秒前
11秒前
11秒前
科研通AI2S应助小牙医采纳,获得10
11秒前
Founder完成签到,获得积分10
12秒前
Singularity应助shichen采纳,获得10
12秒前
Yhcir发布了新的文献求助20
12秒前
priss111应助iUi采纳,获得30
12秒前
阿狸a发布了新的文献求助30
12秒前
科研通AI2S应助张才豪采纳,获得10
13秒前
13秒前
徐徐完成签到,获得积分10
13秒前
打打应助小木子采纳,获得10
14秒前
王灿灿发布了新的文献求助10
14秒前
14秒前
15秒前
缓慢的饼干应助2531采纳,获得10
15秒前
慕青应助chemier027采纳,获得10
15秒前
15秒前
16秒前
科研通AI2S应助HOPE采纳,获得10
16秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156574
求助须知:如何正确求助?哪些是违规求助? 2808051
关于积分的说明 7875794
捐赠科研通 2466300
什么是DOI,文献DOI怎么找? 1312843
科研通“疑难数据库(出版商)”最低求助积分说明 630280
版权声明 601919