Comparison of Dynamic Contrast‐Enhanced MRI and Non‐Mono‐Exponential Model‐Based Diffusion‐Weighted Imaging for the Prediction of Prognostic Biomarkers and Molecular Subtypes of Breast Cancer Based on Radiomics

乳腺癌 医学 接收机工作特性 磁共振弥散成像 无线电技术 有效扩散系数 磁共振成像 逻辑回归 乳房磁振造影 动态对比度 动态增强MRI 核医学 放射科 癌症 内科学 乳腺摄影术
作者
Lan Zhang,Xin‐Xiang Zhou,Lu Liu,A Liu,Wenjuan Zhao,Hong‐Xia Zhang,Yuemin Zhu,Zi‐Xiang Kuai
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:58 (5): 1590-1602 被引量:8
标识
DOI:10.1002/jmri.28611
摘要

Dynamic contrast-enhanced (DCE) MRI and non-mono-exponential model-based diffusion-weighted imaging (NME-DWI) that does not require contrast agent can both characterize breast cancer. However, which technique is superior remains unclear.To compare the performances of DCE-MRI, NME-DWI and their combination as multiparametric MRI (MP-MRI) in the prediction of breast cancer prognostic biomarkers and molecular subtypes based on radiomics.Prospective.A total of 477 female patients with 483 breast cancers (5-fold cross-validation: training/validation, 80%/20%).A 3.0 T/DCE-MRI (6 dynamic frames) and NME-DWI (13 b values).After data preprocessing, high-throughput features were extracted from each tumor volume of interest, and optimal features were selected using recursive feature elimination method. To identify ER+ vs. ER-, PR+ vs. PR-, HER2+ vs. HER2-, Ki-67+ vs. Ki-67-, luminal A/B vs. nonluminal A/B, and triple negative (TN) vs. non-TN, the following models were implemented: random forest, adaptive boosting, support vector machine, linear discriminant analysis, and logistic regression.Student's t, chi-square, and Fisher's exact tests were applied on clinical characteristics to confirm whether significant differences exist between different statuses (±) of prognostic biomarkers or molecular subtypes. The model performances were compared between the DCE-MRI, NME-DWI, and MP-MRI datasets using the area under the receiver-operating characteristic curve (AUC) and the DeLong test. P < 0.05 was considered significant.With few exceptions, no significant differences (P = 0.062-0.984) were observed in the AUCs of models for six classification tasks between the DCE-MRI (AUC = 0.62-0.87) and NME-DWI (AUC = 0.62-0.91) datasets, while the model performances on the two imaging datasets were significantly poorer than on the MP-MRI dataset (AUC = 0.68-0.93). Additionally, the random forest and adaptive boosting models (AUC = 0.62-0.93) outperformed other three models (AUC = 0.62-0.90).NME-DWI was comparable with DCE-MRI in predictive performance and could be used as an alternative technique. Besides, MP-MRI demonstrated significantly higher AUCs than either DCE-MRI or NME-DWI.2.Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yajusenpai完成签到,获得积分10
刚刚
lfg完成签到,获得积分10
刚刚
下雨发布了新的文献求助10
刚刚
刚刚
1秒前
3秒前
4秒前
乐乐应助tooty采纳,获得10
4秒前
5秒前
虚幻春天完成签到,获得积分10
5秒前
5秒前
mkW完成签到,获得积分10
5秒前
脑洞疼应助微笑发夹采纳,获得10
6秒前
Hello应助甜美书瑶采纳,获得10
6秒前
6秒前
白智妍发布了新的文献求助10
6秒前
sword发布了新的文献求助10
7秒前
爱哭的小羽完成签到,获得积分10
7秒前
hyc发布了新的文献求助10
7秒前
7秒前
Cyber完成签到,获得积分20
8秒前
学就完了完成签到,获得积分10
8秒前
小圆子发布了新的文献求助10
8秒前
sky发布了新的文献求助10
8秒前
9秒前
9秒前
wangwangwang发布了新的文献求助10
10秒前
11秒前
11秒前
嗯哼应助dd33采纳,获得20
11秒前
five43发布了新的文献求助10
11秒前
12秒前
Ava应助coffeecoffee采纳,获得10
12秒前
加油加油发布了新的文献求助10
13秒前
chd完成签到 ,获得积分10
13秒前
13秒前
科研通AI2S应助支妙芙采纳,获得10
13秒前
胡老六发布了新的文献求助10
13秒前
14秒前
深情安青应助liuqi6767采纳,获得10
15秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3258553
求助须知:如何正确求助?哪些是违规求助? 2900371
关于积分的说明 8310106
捐赠科研通 2569621
什么是DOI,文献DOI怎么找? 1395861
科研通“疑难数据库(出版商)”最低求助积分说明 653318
邀请新用户注册赠送积分活动 631221