Comparison of Dynamic Contrast‐Enhanced MRI and Non‐Mono‐Exponential Model‐Based Diffusion‐Weighted Imaging for the Prediction of Prognostic Biomarkers and Molecular Subtypes of Breast Cancer Based on Radiomics

乳腺癌 医学 接收机工作特性 磁共振弥散成像 无线电技术 有效扩散系数 磁共振成像 逻辑回归 乳房磁振造影 动态对比度 动态增强MRI 核医学 放射科 癌症 内科学 乳腺摄影术
作者
Lan Zhang,Xin‐Xiang Zhou,Lu Liu,A Liu,Wenjuan Zhao,Hong‐Xia Zhang,Yuemin Zhu,Zi‐Xiang Kuai
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:58 (5): 1590-1602 被引量:8
标识
DOI:10.1002/jmri.28611
摘要

Dynamic contrast-enhanced (DCE) MRI and non-mono-exponential model-based diffusion-weighted imaging (NME-DWI) that does not require contrast agent can both characterize breast cancer. However, which technique is superior remains unclear.To compare the performances of DCE-MRI, NME-DWI and their combination as multiparametric MRI (MP-MRI) in the prediction of breast cancer prognostic biomarkers and molecular subtypes based on radiomics.Prospective.A total of 477 female patients with 483 breast cancers (5-fold cross-validation: training/validation, 80%/20%).A 3.0 T/DCE-MRI (6 dynamic frames) and NME-DWI (13 b values).After data preprocessing, high-throughput features were extracted from each tumor volume of interest, and optimal features were selected using recursive feature elimination method. To identify ER+ vs. ER-, PR+ vs. PR-, HER2+ vs. HER2-, Ki-67+ vs. Ki-67-, luminal A/B vs. nonluminal A/B, and triple negative (TN) vs. non-TN, the following models were implemented: random forest, adaptive boosting, support vector machine, linear discriminant analysis, and logistic regression.Student's t, chi-square, and Fisher's exact tests were applied on clinical characteristics to confirm whether significant differences exist between different statuses (±) of prognostic biomarkers or molecular subtypes. The model performances were compared between the DCE-MRI, NME-DWI, and MP-MRI datasets using the area under the receiver-operating characteristic curve (AUC) and the DeLong test. P < 0.05 was considered significant.With few exceptions, no significant differences (P = 0.062-0.984) were observed in the AUCs of models for six classification tasks between the DCE-MRI (AUC = 0.62-0.87) and NME-DWI (AUC = 0.62-0.91) datasets, while the model performances on the two imaging datasets were significantly poorer than on the MP-MRI dataset (AUC = 0.68-0.93). Additionally, the random forest and adaptive boosting models (AUC = 0.62-0.93) outperformed other three models (AUC = 0.62-0.90).NME-DWI was comparable with DCE-MRI in predictive performance and could be used as an alternative technique. Besides, MP-MRI demonstrated significantly higher AUCs than either DCE-MRI or NME-DWI.2.Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
苏信怜完成签到,获得积分10
1秒前
子时月发布了新的文献求助10
1秒前
彭于晏应助Z01采纳,获得30
2秒前
2秒前
子车雁开发布了新的文献求助10
2秒前
2秒前
长风完成签到,获得积分10
2秒前
2秒前
冷静的奇迹完成签到,获得积分10
2秒前
3秒前
Jzhang发布了新的文献求助30
3秒前
4秒前
逍遥完成签到,获得积分10
4秒前
6秒前
小二郎应助罗永昊采纳,获得10
6秒前
李健的小迷弟应助星魂采纳,获得10
6秒前
atom发布了新的文献求助30
7秒前
稳重的烙发布了新的文献求助10
7秒前
冰糖完成签到,获得积分10
7秒前
好难好难发布了新的文献求助10
7秒前
徐凤年完成签到,获得积分10
7秒前
wm发布了新的文献求助10
8秒前
FAN完成签到,获得积分10
8秒前
跳跃的雁发布了新的文献求助10
8秒前
Hello应助子车雁开采纳,获得10
8秒前
9秒前
斯文败类应助机智紫寒采纳,获得10
9秒前
明棋完成签到,获得积分20
11秒前
ED应助小叶子采纳,获得10
11秒前
濛嘻嘻发布了新的文献求助10
11秒前
12秒前
木颜完成签到 ,获得积分10
13秒前
叶燕发布了新的文献求助10
13秒前
背后煎蛋发布了新的文献求助10
13秒前
梦Weimar完成签到,获得积分10
13秒前
qq完成签到 ,获得积分10
14秒前
Jzhang完成签到,获得积分10
14秒前
和谐诗柳完成签到 ,获得积分10
15秒前
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961223
求助须知:如何正确求助?哪些是违规求助? 3507496
关于积分的说明 11136509
捐赠科研通 3239958
什么是DOI,文献DOI怎么找? 1790571
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803186